Synthesis, Characterization, and Catalytic Activity of a Series of Aluminium–Amidate Complexes*
Kevin P. Yeagle A , Darryl Hester A , Nicholas A. Piro B , William G. Dougherty B , W. Scott Kassel B and Christopher R. Graves A CA Department of Chemistry & Biochemistry, Albright College, 13th & Bern St, Reading, PA 19612, USA.
B Department of Chemistry, Villanova University, 800 Lancaster Ave, Villanova, PA 19085, USA.
C Corresponding author. Email: cgraves@alb.edu
Australian Journal of Chemistry 68(3) 357-365 https://doi.org/10.1071/CH14514
Submitted: 23 August 2014 Accepted: 29 September 2014 Published: 20 January 2015
Abstract
The aluminium complexes {[κ2-N,O-(t-BuNCOPh)]AlMe2}2 (2), [κ2-N,O-(t-BuNCOPh)]2AlMe (3), and [κ2-N,O-(t-BuNCOPh)]3Al (4) were prepared through the protonolysis reaction between trimethylaluminium and one, two, or three equivalents, respectively, of N-tert-butylbenzamide. Complex 2 was also prepared via a salt metathesis reaction between K(t-BuNCOPh) and dimethylaluminium chloride. Complexes 2–4 were characterized using 1H and 13C NMR spectroscopy. Single-crystal X-ray diffraction analysis of the complexes corroborated ligand : metal stoichiometries and revealed that all the amidate ligands coordinate to the aluminium ion in a κ2 fashion. The Al–amidate complexes 2–4 were viable catalyst precursors for the Meerwein–Ponndorf–Verley–Oppenauer reduction–oxidation manifold, successfully interconverting several classes of carbonyl and alcohol substrates.
References
[1] H. Rosner, A Chemist Comes Very Close to a Midas Touch. The New York Times, 15 October 2012. Available at http://www.nytimes.com/2012/10/16/science/modern-day-alchemy-has-iron-working-like-platinum.html?pagewanted=all (accessed 11 November 2014)[2] F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, in Advanced Inorganic Chemistry 6th ed. 1999, p. 1355 (John Wiley & Sons, Inc.: New York, NY).
[3] D. Rabinovich, Nat. Chem. 2013, 5, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCrtrjM&md5=3a96e11d0eee7a2a59e72ad9f48e2534CAS | 23247182PubMed |
[4] Aluminum, December 2013 (U. S. Geological Survey: Reston, VA)
[5] T. Taguchi, H. Al Yanai III, in Acid Catalysis in Modern Organic Synthesis (Eds H. Yamamoto, K. Ishihara) 2008, Vol. 1, pp. 241–345 (Wiley-VCH: Weinheim).
[6] (a) For recent selected examples, see: (a) D. Li, Y. Peng, C. Geng, K. Liu, D. Kong, Dalton Trans. 2013, 42, 11295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWktrbM&md5=2f6bdd387e108bd30341f04132f05d6eCAS | 23817900PubMed |
(b) C.-Y. Li, D.-C. Liu, B.-T. Ko, Dalton Trans. 2013, 42, 11488.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. D. Cross, L. E. N. Allan, A. Decken, M. P. Shaver, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1137.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. O. Miranda, Y. DePorre, H. Vazquez-Lima, M. A. Johnson, D. J. Marell, C. J. Cramer, W. B. Tolman, Inorg. Chem. 2013, 52, 13692.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Hild, N. Neehaul, F. Bier, M. Wirsum, C. Gourlaouen, S. Dagorne, Organometallics 2013, 32, 587.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. D. Cross, G. K. Tennekone, A. Decken, M. P. Shaver, Green Mater. 2013, 1, 79.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. Liu, W.-S. Dong, J.-Y. Liu, Y.-S. Li, Dalton Trans. 2014, 43, 2244.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. Bian, S. Abbina, Z. Lu, E. Kolodka, G. Du, Organometallics 2014, 33, 2489.
| Crossref | GoogleScholarGoogle Scholar |
(i) C. T. Altaf, H. Wang, M. Keram, Y. Yang, H. Ma, Polyhedron 2014, 81, 11.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. Schlueter, M. Blazejak, L. Hintermann, ChemCatChem 2013, 5, 3309.
| 1:CAS:528:DC%2BC3sXht12isrbP&md5=c8ff05f8cd8d627a616c1c121cf1a67cCAS |
[8] J. Koller, R. G. Bergman, Chem. Commun. 2010, 46, 4577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsF2iu78%3D&md5=d6d5eccab45ab3223a89424e074c9ae2CAS |
[9] J. Koller, R. G. Bergman, Organometallics 2010, 29, 3350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosleht7Y%3D&md5=f67eaa9e25b508c335a0db3d26a8a106CAS |
[10] J. Koller, R. G. Bergman, Organometallics 2010, 29, 5946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSntbvN&md5=c035661a44d6443e8d2dc76ee6104f1fCAS |
[11] C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adan, E. Martin, A. W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1yjsA%3D%3D&md5=8ad2393e8e70def885f9587f1f346d92CAS | 23302007PubMed |
[12] S. H. Kim, D. Ahn, M. J. Go, M. H. Park, M. Kim, J. Lee, Y. Kim, Organometallics 2014, 33, 2770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1Cqu7g%3D&md5=16642e15b76a82e2625408aae61ed695CAS |
[13] M. A. Fuchs, C. Altesleben, T. A. Zevaco, E. Dinjus, Eur. J. Inorg. Chem. 2013, 4541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1aqtL3J&md5=e9b9cd786ee7d70b714d449812878f99CAS |
[14] D. J. Darensbourg, D. R. Billodeaux, Inorg. Chem. 2005, 44, 1433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptlShsw%3D%3D&md5=c1650ae0927d183557450ab0d4a45295CAS | 15732984PubMed |
[15] (a) For examples of catalytic MPV reductions protocols employing aluminium complexes, see: (a) E. J. Campbell, H. Zhou, S. T. Nguyen, Org. Lett. 2001, 3, 2391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Witbk%3D&md5=b941a863cf4ebc0ba44c9d9ca44fff00CAS | 11463324PubMed |
(b) T. Ooi, T. H. Ichikawa, K. Maruoka, Angew. Chem., Int. Ed. 2001, 40, 3610.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y.-C. Liu, B.-T. Ko, B.-H. Huang, C.-C. Lin, Organometallics 2002, 21, 2066.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Yin, M. A. Huffman, K. M. Conrad, J. D Armstrong, J. Org. Chem. 2006, 71, 840.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Nandi, Y. I. Matvieiev, V. I. Boyko, K. A. Durkin, V. I. Kalchenko, A. Katz, J. Catal. 2011, 284, 42.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Flack, K. Kitagawa, P. Pollet, C. A. Eckert, K. Richman, J. Stringer, W. Dubay, C. L. Liotta, Org. Process Res. Dev. 2012, 16, 1301.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) For examples of catalytic Oppenauer oxidation protocols, see: T. Ooi, H. Otsuka, T. Miura, H. Ichikawa, K. Maruoka, Org. Lett. 2002, 4, 2669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFajur0%3D&md5=38984d9ce9e14e30028aaea235f0e631CAS | 12153205PubMed |
(b) C. R. Graves, B.-S. Zeng, S. T. Nguyen, J. Am. Chem. Soc. 2006, 128, 12596.
| Crossref | GoogleScholarGoogle Scholar |
[17] C. R. Graves, K. A. Scheidt, S. T. Nguyen, Org. Lett. 2006, 8, 1229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs12ksLY%3D&md5=a3c70839caf4202be816ac7b9d5b4254CAS | 16524310PubMed |
[18] C. Li, R. K. Thomson, B. Gillon, B. O. Patrick, L. L. Schafer, Chem. Commun. 2003, 2462.
| Crossref | GoogleScholarGoogle Scholar |
[19] F. Zhang, H. Song, G. Zi, Dalton Trans. 2011, 40, 1547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOjs70%3D&md5=c3eb6a31966293d572f2f5d0d7db8510CAS | 21218246PubMed |
[20] S. Liu, W.-H. Sun, Y. Zeng, D. Wang, W. Zhang, Y. Li, Organometallics 2010, 29, 2459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFaqurg%3D&md5=b9373e86dee200e08d11e5cca99bc0aaCAS |
[21] A. V. Lee, L. L. Schafer, Eur. J. Inorg. Chem. 2007, 2243.
| 1:CAS:528:DC%2BD2sXms1Okt78%3D&md5=c7864d49fbadeffbfec9a6985cf52ee4CAS |
[22] M. B. Jones, K. I. Hardcastle, K. S. Hagen, C. E. MacBeth, Inorg. Chem. 2011, 50, 6402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlCqsLw%3D&md5=54d92fadf5a12b61a8d707bfc54cd369CAS | 21667986PubMed |
[23] R. O. Ayinla, T. Gibson, L. L. Schafer, J. Organomet. Chem. 2011, 696, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFegs7fE&md5=8795404c00747d38311bc107bafd4d30CAS |
[24] L. Zhao, H. Ding, B. Zhao, C. Lu, Y. Yao, Polyhedron 2014, 83, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnvFeqt7w%3D&md5=d6b972a8441898a36b560748ea2471bfCAS |
[25] Y.-L. Wang, Y.-X. Zhou, L.-Q. Deng, Q.-S. Hu, X. Tao, Y.-Z. Shen, J. Coord. Chem. 2013, 66, 3581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWrs7bI&md5=9f9fa27390f0a216ec5bf601aeba25c2CAS |
[26] L. J. E. Stanlake, J. D. Beard, L. L. Schafer, Inorg. Chem. 2008, 47, 8062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOhtLs%3D&md5=bba1774f2c0c3321af119dd1efe2398cCAS |
[27] X. Hu, C. Lu, B. Wu, H. Ding, B. Zhao, Y. Yao, Q. Shen, J. Organomet. Chem. 2013, 732, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFelsbg%3D&md5=c1277dd3ec37677f5d6aaf7f9178753aCAS |
[28] H. Ding, C. Lu, X. Hu, B. Zhao, B. Wu, Y. Yao, Synlett 2013, 24, 1269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Snu7%2FN&md5=a0bf43f8dd29d4e84e46a08818443b28CAS |
[29] J. R. Horder, M. F. Lappert, J. Chem. Soc. A 1968, 2004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXks1Cht7w%3D&md5=adb18bfc56924d36a7b632a652e0cb37CAS |
[30] J. R. Jennings, K. Wade, B. K. Wyatt, J. Chem. Soc. A 1968, 2535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXltVKkurY%3D&md5=b85c3ee67286317fd56f6dc353424f6eCAS |
[31] Y.-L. Huang, B.-H. Huang, B.-T. Ko, C.-C. Lin, J. Chem. Soc., Dalton Trans. 2001, 1359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFSqtb4%3D&md5=802037f6313aa8bff00b3a9caf10bf47CAS |
[32] B.-H. Huang, T.-L. Yu, Y.-L. Huang, B.-T. Ko, C.-C. Lin, Inorg. Chem. 2002, 41, 2987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlGis7o%3D&md5=3a78a77928fa35f6d24c53ccae489410CAS | 12033910PubMed |
[33] M. B. Jones, K. I. Hardcastle, C. E. MacBeth, Polyhedron 2010, 29, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Smt7vN&md5=2b6a3f2b33d03f66a974ee090b051a2bCAS |
[34] S. E. Eldred, D. A. Stone, S. H. Gellman, S. S. Stahl, J. Am. Chem. Soc. 2003, 125, 3422.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGgurg%3D&md5=2e4d41f1a92405c87fe3f5e2d8f17219CAS | 12643691PubMed |
[35] J. M. Hoerter, K. M. Otte, S. H. Gellman, S. S. Stahl, J. Am. Chem. Soc. 2006, 128, 5177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislOgu7k%3D&md5=35f4f5fe431a20a294c4b3c357cd6992CAS | 16608354PubMed |
[36] J. M. Hoerter, K. M. Otte, S. H. Gellman, Q. Cui, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCisLvL&md5=66af092b493dc06d73265d5135801c2fCAS | 18092780PubMed |
[37] In situ deprotonation of 1-H with sodium bis(trimethylsilyl)amide followed by reaction with AlCl(CH3)2 at room temperature also gave complex 2. However, the crude reaction mixture showed multiple tBu peaks, indicating further reaction chemistry after salt metathesis. The yield of 2 was only 24 % using this route.
[38] A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=03dc887c3210966659e694ec9f2de1edCAS |
[39] D. A. Atwood, M. S. Hill, J. A. Jegier, D. Rutherford, Organometallics 1997, 16, 2659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslOksbw%3D&md5=cf2656501d08ecaa65ca4f47f87278efCAS |
[40] C. R. Graves, H. Zhou, C. L. Stern, S. T. Nguyen, J. Org. Chem. 2007, 72, 9121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2jtb3L&md5=e0e034ee756e0001f03d24892c3ed0b1CAS | 17956117PubMed |
[41] S. Hamidi, H. M. Dietrich, D. Werner, L. N. Jende, C. Maichle-Moessmer, K. W. Toernroos, G. B. Deacon, P. C. Junk, R. Anwander, Eur. J. Inorg. Chem. 2013, 2460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslWruro%3D&md5=e7255f9a7e5352efcc0c46ebef00e460CAS |
[42] D. Li, Y. Peng, C. Geng, K. Liu, D. Kong, Dalton Trans. 2013, 42, 11295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWktrbM&md5=2f6bdd387e108bd30341f04132f05d6eCAS | 23817900PubMed |
[43] F. Hild, N. Neehaul, F. Bier, M. Wirsum, C. Gourlaouen, S. Dagorne, Organometallics 2013, 32, 587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1OgsQ%3D%3D&md5=f27d3976c54a9361c99608b01c9e2f6eCAS |
[44] H. Meerwein, R. Schmidt, Justus Liebigs Ann. Chem. 1925, 444, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB2MXisFShtw%3D%3D&md5=4fda64601c8fd2a2e7ac901e0285672cCAS |
[45] W. Ponndorf, Angew. Chem. 1926, 39, 138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB28XhtlShsA%3D%3D&md5=688dbd05f945598485781a31ea416f5dCAS |
[46] M. Verley, Bull. Soc. Chim. Fr. 1925, 37, 871.
| 1:CAS:528:DyaB28XjvFQ%3D&md5=361414c78fc4d5c2d60474a8ff39ba99CAS |
[47] C. R. Graves, E. J. Campbell, S. T. Nguyen, Tetrahedron: Asymmetry 2005, 16, 3460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GitLfF&md5=bfdf20dc3f4b932843f8db8dc9485457CAS |
[48] R. Cohen, C. R. Graves, S. T. Nguyen, J. M. L. Martin, M. A. Ratner, J. Am. Chem. Soc. 2004, 126, 14796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKgt7k%3D&md5=b72ddec1c37ed95093189bdcee2b66d3CAS | 15535705PubMed |
[49] C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens, Synthesis 1994, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntVShsrg%3D&md5=d7971af8af891b4ad0cbdd1e4e71e4d9CAS |
[50] Dimeric {[κ2-N,O-(t-BuNCOPh)]AlMe2}2 complex 2 (5 mol-%) was used for a total molar ratio of 10 mol-% Al.
[51] The conversion of acetophenone to sec-phenethyl alcohol at room temperature using only 4 equiv. 2-propoanol was 14 % (for 2) and 32 % (for 3). Analogous reactions run at 50°C gave conversions of 53 % (for 2) and 56 % (for 3).
[52] A 1 : 1 mixture of complex 4 and 2-propanol in C6D6 produced a signal in the 1H NMR spectra corresponding to the N–H proton of the free ligand. This supports the conclusion that one of the amidate ligands in 4 is being protonated off under our reaction conditions to generate a catalytically viable species.
[53] R. V. Oppenauer, Recl. Trav. Chim. Pays-Bas. 1937, 56, 137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXitFOqsw%3D%3D&md5=294c2fe9e11b0bc3f962ce72c54b12eeCAS |
[54] Dimeric {[κ2-N,O-(t-BuNCOPh)]AlMe2}2 complex 2 (2.5 mol-%) was used for a total molar ratio of 5 mol-% Al.
[55] APEX II ver. 2012.10–0 or ver. 2013.4–1 2012 (Bruker AXS: Madison, WI).
[56] SAINT+ ver. 8.26A: Data Reduction and Correction Program 2011 (Bruker AXS: Madison, WI).
[57] SADABS/TWINABS ver. 2012/1: An Empirical Absorption Correction Program 2012 (Bruker AXS: Madison, WI).
[58] G. M. Sheldrick, SHELXTL ver. 2012.10–2 or Higher: Structure Determination Software Suite 2012 (Bruker AXS: Madison, WI).
[59] Using ethyl acetate/hexanes (2 : 8) mixture as the eluting solvent, the RF values of acetopenone, sec-phenethyl alcohol, and 1-H were 0.74, 0.45, and 0.57, respectively.