The Synthesis, Characterisation, Photophysical and Thermal Properties, and Photovoltaic Performance of 7-Coumarinoxy-4-Methyltetrasubstituted Metallophthalocyanines
Jun-Jie Guo A E , Shi-Rong Wang B C E , Xiang-Gao Li B C , Fei Zhang B C , Yin Xiao B C and Chong Teng DA School of Science, Tianjin University of Commerce, 300134 Tianjin, China.
B School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China.
C Collaborative Innovation Center of Chemical Science and Engineering, 300072 Tianjin, China.
D Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China.
E Corresponding authors. Email: gjjie@tjcu.edu.cn; wangshirong@tju.edu.cn
Australian Journal of Chemistry 68(7) 1025-1034 https://doi.org/10.1071/CH14502
Submitted: 9 August 2014 Accepted: 22 October 2014 Published: 24 February 2015
Abstract
The synthesis, characterisation, photophysical and thermal properties of 2(3),9(10),16(17),23(24)-tetrakis(7-coumarinoxy-4-methyl)-phthalocyaninatozinc(ii) (ZnPc-Coumarin) and 2(3),9(10),16(17),23(24)-tetrakis(7-coumarinoxy-4-methyl)-phthalocyaninatocobalt(ii) (CoPc-Coumarin) are reported. The ground state absorbance of ZnPc-Coumarin shows molar extinction coefficients as high as 1.80 × 105 dm3 mol–1 cm–1. The fluorescence spectrum and fluorescence quantum yields of compounds ZnPc-Coumarin and CoPc-Coumarin are also investigated. The photoluminescence decay of the two transition-metal complexes in DMF solution, in poly(methyl methacrylate) (PMMA), and on TiO2 films has been studied with time-resolved emission. This study shows that the electron transfer from the dye to TiO2 is through space. The thermal stability studies indicate that both of the two complexes are stable up to 390°C. The ZnPc-Coumarin achieved a higher overall conversion efficiency than the reported SnPcCl2-Coumarin, InPcCl-Coumarin, and RuPcCl-Coumarin because of its slower charge recombination rate and faster electron injection from the dye to the conduction band of the conducting glass.
References
[1] A. Snow, W. R. Bager, in Phthalocyanines–Properties and Applications (Eds C. C. Leznoff, A. B. P. Lever), 1989 pp. 341–346 (VCH: New York, NY)[2] M. N. Yarasir, M. Kandaz, A. Koca, Inorg. Chim. Acta 2011, 365, 256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wjsb3J&md5=d351c6e6c1f8acb4f7a9dfacabd863c6CAS |
[3] A. M. V. M. Pereira, A. R. M. Soares, M. J. F. Calvete, D. L. T. Gema, J. Porphyrins Phthalocyanines 2009, 13, 419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGnurc%3D&md5=7fcff6ee79aafc908dec86edacba5d85CAS |
[4] M. Piskin, M. Durmus, M. Bulut, Inorg. Chim. Acta 2011, 373, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslaksrc%3D&md5=694d264b8be2029053f4b0df21695d1fCAS |
[5] X. C. Chen, J. Thomas, P. Gangopadhyay, R. A. Norwood, N. Peyghambarian, D. McGrath, J. Am. Chem. Soc. 2009, 131, 13840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGktbnL&md5=f55caca99df756ae22a7216a7d8b0ef1CAS |
[6] E. Yabas, M. Sülü, S. Saydam, F. Dumludag, B. Salih, O. Bekaroglu, Inorg. Chim. Acta 2011, 365, 340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WjsbrE&md5=f7bf0b500372c6cc7c2e6db82c6b637eCAS |
[7] A. Collings, C. Critchley, Artificial Photosynthesis: From Basic Biology to Industrial Application 2005 (Wiley-VCH: Weinheim, Germany)
[8] A. Reynal, E. Palomares, Eur. J. Inorg. Chem. 2011, 4509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVylur%2FL&md5=c9b8e0a6bfc303bd7ed60bb079e53c31CAS |
[9] M. Grätzel, J. Photochem. Photobiol. Chem. 2003, 4, 145.
| Crossref | GoogleScholarGoogle Scholar |
[10] Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, J. Phys. Chem. C 2007, 111, 7224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFChsbw%3D&md5=e40f8aae494c567c04b146f42059d847CAS |
[11] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlOjtrs%3D&md5=cfc0d22ac85cd339cf4317ffc6d0f050CAS | 15453726PubMed |
[12] T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, M. Grätzel, Angew. Chem. Int. Ed. 2010, 49, 6646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFamur%2FE&md5=3cc63a81a3ed02641032e3e117d3dc65CAS |
[13] H. Spanggaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2004, 83, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGhsLg%3D&md5=cf533766d50e5c50bac611d19d5b49f9CAS |
[14] A. Morandeira, I. Lopez-Duarte, M. V. Martinez-Diaz, B. O’Regan, C. Shuttle, N. A. Haji-Zainulabidin, T. Torres, E. Palomares, J. R. Durrant, J. Am. Chem. Soc. 2007, 129, 9250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Cgtrg%3D&md5=92811ddcf2256418791b8a1f50c9a926CAS | 17625854PubMed |
[15] M. García-Iglesias, J. H. Yum, R. Humphry-Baker, S. M. Zakeeruddin, P. Péchy, P. Vázquez, Chem. Sci. 2011, 2, 1145.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. Palmas, A. D. Pozzo, M. Mascia, A. Vacca, P. C. Ricci, Chem. Eng. J. 2012, 211–212, 285.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. J. Guo, S. R. Wang, X. G. Li, M. Y. Yuan, Dyes Pigm. 2012, 93, 1463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2rsg%3D%3D&md5=90c87b8eb88ec6e9f8a8f69557223fccCAS |
[18] S. Mathew, A. Yella, P. Gao, H. B. Robin, F. E. Basile, A. A. Negar, T. Ivano, R. Ursula, M. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Shtro%3D&md5=2c1ab4e2c040d6a512d340c0bba083f0CAS | 24557140PubMed |
[19] A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ais74%3D&md5=db989b639e731f9390cd509b92144ecdCAS | 10813871PubMed |
[20] F. T. Kong, S. Y. Dai, K. J. Wang, Adv. OptoElectronics 2007, 2007,
| Crossref | GoogleScholarGoogle Scholar |
[21] C. W. Chang, C. K. Chou, I. J. Chang, Y. P. Lee, E. W. G. Diau, J. Phys. Chem. C 2007, 111, 13288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFWgtbw%3D&md5=99af5dcdbfff662661651ce947c12dedCAS |
[22] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals Vol. 5, 3rd edn. 2003 (Butterworth/Heinemann: Tokyo).
[23] F. Zhang, S.R. Wang, X.G. Li, J. J. Guo, Fine Chemicals 2013, 30(11), 1303.
[24] D. Maree, T. Nyokong, K. Suhling, D. Phillips, J. Porphyrins Phthalocyanines 2002, 06, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptlaqu7g%3D&md5=72b3b8ef66ebe40762d99d1e001a8c30CAS |
[25] C. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, J. Am. Ceram. Soc. 1997, 80, 3157.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. Asli Esenpinar, M. Bulut, Dyes Pigm. 2008, 76, 249.
| Crossref | GoogleScholarGoogle Scholar |
[27] A. N. Sidorov, A. N. Terenin, Opt. Spectrosc. 1961, 11, 175.
| 1:CAS:528:DyaF3MXhtlGgtbo%3D&md5=2a17d8e3c29bd84813756a75239a9fcbCAS |
[28] E. T. Saka, M. Durmus, H. Kantekin, J. Organomet. Chem. 2011, 696, 913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKqu78%3D&md5=77005597e17a3be30fdc711af9b6b094CAS |
[29] M. Çamur, A. A. Esenpinar, A. R. Özkaya, M. Bulut, J. Organomet. Chem. 2011, 696, 1868.
| Crossref | GoogleScholarGoogle Scholar |
[30] Z. Musil, P. Zimcik, M. Miletin, K. Kopecky, P. Petrik, J. Lenco, J. Photochem. Photobiol., A 2007, 186, 316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Giu70%3D&md5=6529cabbeadcf917d425f21748e77d5fCAS |
[31] H. Engelkamp, R. J. M. Nolte, J. Porphyrins Phthalocyanines 2000, 04, 454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlSqtL0%3D&md5=927f2fe91a93b89a8f5b18bed5c68e8bCAS |
[32] S. Altun, A. R. Ozkaya, M. Bulut, Polyhedron 2012, 48, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WmsLnE&md5=e24e768ca3ddf4b7d3195e73c8c27f1fCAS |
[33] F. Barigelletti, A. Juris, V. Balzani, P. Belser, A. V. Zelewsky, Inorg. Chem. 1983, 22, 3335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXls1Khtbo%3D&md5=9330c5e0e39d51d7be48fb285b53e466CAS |
[34] H. Auweter, H. Haberkorn, W. Heckmann, D. Horn, E. Lüddecke, J. Rieger, Angew. Chem. Int. Ed. 1999, 38, 2188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFGmu7g%3D&md5=0438816fc3fc8eadcdff5fc9e20f16e1CAS |
[35] A. Ogunsipe, J. Y. Chen, T. Nyokong, New J. Chem. 2004, 28, 822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslCjt7s%3D&md5=e373820f88873b25b49cba077b67c331CAS |
[36] M. O. Senge, Chem. Commun. 2006, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsF2mtA%3D%3D&md5=bf66ebeb01cabd35aea13b4ee18e2328CAS |
[37] S. E. Koops, J. R. Durrant, Inorg. Chim. Acta 2008, 361, 663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKku7jJ&md5=65da6eb527c0a89aa46aac3a7cfcaf2eCAS |
[38] V. Biju, M. Micic, D. Hu, H. P. Lu, J. Am. Chem. Soc. 2004, 126, 9374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFentb0%3D&md5=86dba12121c6232d3de3faa8d4daf760CAS | 15281829PubMed |
[39] B. Gao, Y. Li, J. H. Su, H. Tian, Supramol. Chem. 2007, 19, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFOiu7Y%3D&md5=c583d37a8531c30216ca7e996bb08d5fCAS |
[40] A. Synak, M. Gil, J. A. Organero, F. S. Marta, A. Douhal, J. Phys. Chem. C 2009, 113, 19199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GgsLfE&md5=8446766099dd3c743953543e6ee6b9a3CAS |
[41] Y. C. Lu, E. W. G. Diau, H. Rau, J. Phys. Chem. A 2005, 109, 2090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2nuro%3D&md5=5588af0cb668436ab2d75defea31506cCAS | 16838979PubMed |
[42] C. W. Chang, Y. C. Lu, T. T. Wang, E. W. G. Diau, J. Am. Chem. Soc. 2004, 126, 10109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFantbc%3D&md5=87eafe80759984c25db48e57edad03d7CAS | 15303887PubMed |
[43] M. Glasbeek, H. Zhang, Chem. Rev. 2004, 104, 1929.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFCqurg%3D&md5=1ecb0629c27b5d375089f7fdf3a9d75eCAS | 15080717PubMed |
[44] T. T. Wang, S. M. Chung, F. I. Wu, C. F. Shu, E. W. G. Diau, J. Phys. Chem. B 2005, 109, 23827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ert7nI&md5=522e754917e9d52426ef25654e26b1f2CAS | 16375368PubMed |
[45] M. Ogawa, T. Nakamura, J. I. Mori, K. Kuroda, J. Phys. Chem. B 2000, 104, 8554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFKmtro%3D&md5=b92746545af4f97598d9fd7c329de60dCAS |
[46] L. Luo, C. W. Chang, C. Y. Lin, E. W. G. Diau, Chem. Phys. Lett. 2006, 432, 452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KksL7N&md5=fbcaa43bde3b51e1241f954ed9236603CAS |
[47] L. J. Yu, W. Y. Shi, L. Lin, Y. W. Liu, R. J. Li, T. Y. Peng, X. G. Li, Dalton Trans. 2014, 43, 8421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFWhu74%3D&md5=530d8174630ddffa521c752742b297eeCAS |
[48] X. D. Xue, W. H. Zhang, N. N. Zhang, C. G. Ju, X. Peng, Y. B. Yang, Y. X. Liang, Y. Q. Feng, B. Zhang, RSC Adv. 2014, 4, 8894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ektL4%3D&md5=8a1129198610911c3b914d2f7bbbc3aaCAS |
[49] F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc. 2009, 131, 558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFChsbzK&md5=f689d2a5e8a9a87d9fd65618fab2d62bCAS | 19140794PubMed |
[50] X. H. Zhang, L. J. Yu, C. F. Zhuang, T. Y. Peng, R. J. Li, X. G. Li, RSC Adv. 2013, 3, 14363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wit7fK&md5=3d63b4a7c4f4367447f4776c881c7719CAS |
[51] H. X. Wang, M. Liu, M. Zhang, P. Wang, H. Miura, Y. Cheng, J. Bell, Phys. Chem. Chem. Phys. 2011, 13, 17359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Slt7vL&md5=ee3a995577eac339abc8337f1b2425baCAS |
[52] J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. GarciaBelmonte, S. Gimenez, J. Phys. Chem. C 2009, 113, 17278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgt7bP&md5=a232e312a3a09686184799213d3753dcCAS |