N,N-Dialkyl-N′-Chlorosulfonyl Chloroformamidines in Heterocyclic Synthesis. Part XI.* Some Substitution Reactions of Pyrazolo[1,5-b][1,2,4,6]thiatriazine 1,1-Dioxides
Rebecca E. Norman A , Michael V. Perkins A , Andris J. Liepa B and Craig L. Francis B CA School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia.
B CSIRO Manufacturing Flagship, Clayton, Vic. 3168, Australia.
C Corresponding author. Email: craig.francis@csiro.au
Australian Journal of Chemistry 68(7) 1011-1024 https://doi.org/10.1071/CH14547
Submitted: 4 September 2014 Accepted: 20 October 2014 Published: 24 February 2015
Abstract
The recently discovered pyrazolo[1,5-b][1,2,4,6]thiatriazine template was shown to possess four nucleophilic sites (N2, N4, C5, N7) that underwent a range of substitution reactions. Methylation occurred at both N4 and N7. Alkylation with benzylic halides occurred preferentially at N7, regardless of the solvent, but also occurred at C5, N4, and N2. Similar alkylation with α-halo esters occurred at both N4 and N7, but the latter derivatives underwent a novel pyrazole ring expansion to afford pyrimido[1,6-b][1,2,4,6]thiatriazine derivatives. Bromination of pyrazolo[1,5-b][1,2,4,6]thiatriazines afforded unstable 5-bromo derivatives. Tosylation occurred selectively at C5, but in modest yield; catalysis with 1-methylimidazole also led to a low yield of the 5,5′-dimer. The action of HCl on N7-benzylated pyrazolo[1,5-b][1,2,4,6]thiatriazines readily caused extrusion of sulfur dioxide to produce pyrazolo-guanidines.
References
[1] R. E. Norman, M. V. Perkins, A. J. Liepa, C. L. Francis, Aust. J. Chem. 2013, 66, 1323.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKkurvL&md5=110d2096051d79a0f69dcea0a897cfb8CAS |
[2] T. Cablewski, C. L. Francis, A. J. Liepa, Aust. J. Chem. 2008, 61, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFajsQ%3D%3D&md5=595b58fa021097dc6b0914caf4b23ad9CAS |
[3] T. Cablewski, C. L. Francis, A. J. Liepa, Aust. J. Chem. 2008, 61, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFGgt7Y%3D&md5=c5449c92db37afef2dd12869555d9607CAS |
[4] P. J. Duggan, A. J. Liepa, L. K. O’Dea, C. E. Tranberg, Org. Biomol. Chem. 2007, 5, 472.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslSgsw%3D%3D&md5=b4b9359870a80441be4f14cd6c6b7bafCAS | 17252129PubMed |
[5] C. B. Kremer, M. Meltsner, H. Hindin, J. Am. Chem. Soc. 1942, 64, 1010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38XitVGhsg%3D%3D&md5=7433c048ed8aa5e286caff53730f19fcCAS |
[6] L. Fang, J. Shen, Q. Lv, F. Yan, Asian J. Chem. 2011, 23, 3425.
| 1:CAS:528:DC%2BC3MXps12ktLs%3D&md5=7d30dbc35b902edd0cad7cc04341deb2CAS |
[7] G. S. Coumbarides, M. Dingjan, J. Eams, N. Weerasooriya, Bull. Chem. Soc. Jpn. 2001, 74, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs12ht7c%3D&md5=c305e84b91c549c916f8825410d95962CAS |
[8] A. Bouzide, N. LeBerre, G. Sauvé, Tetrahedron Lett. 2001, 42, 8781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslaisbs%3D&md5=65b724b6b568fcb8e75e161da891ce80CAS |
[9] J. S. Yadav, B. V. S. Reddy, T. Swamy, Tetrahedron Lett. 2003, 44, 9121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovF2lt7s%3D&md5=aafce3f6d221ae8c064d0764c8699ca1CAS |
[10] L. H. Q. Wu, H. Liu, X. Chen, H. Wang, Q. Zhang, Chem. Res. Chin. Univ. 2010, 26, 55.
| 1:CAS:528:DC%2BC3cXivVSltbk%3D&md5=19b96361facd8c624beb829c95d9be9eCAS |
[11] S. Kulkarni, M. R. Grimmett, Aust. J. Chem. 1987, 40, 1415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtFagsbs%3D&md5=a029bee13fe2b42cdc395cf100e443f7CAS |
[12] M. V. Gorelik, V. I. Lomzakova, Russ. J. Org. Chem. (Engl. Transl.) 1986, 22, 947.
[13] S. Peruncheralathan, T. A. Khan, H. Ila, H. Junjappa, J. Org. Chem. 2005, 70, 10030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWrsrzN&md5=2b5b988e0c050d86e086a997411a9f60CAS | 16292836PubMed |
[14] Y. Takahashi, S. Hibi, Y. Hoshino, K. Kikuchi, K. Shin, K. Murata-Tai, M. Fujisawa, M. Ino, H. Shibata, M. Yonaga, J. Med. Chem. 2012, 55, 5255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFWqt7s%3D&md5=e3c7e70e4d948d6a5551fe71ce885ee7CAS | 22587443PubMed |