Distinct 3D CdII Coordination Polymers with 1,2-Naphthalenedicarboxylate Regulated by Dipyridyl Co-Ligands with Different Spacers
Zhuo-Wei Wang A , Hui Zhao A , Min Hu A and Chun-Sen Liu A BA Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou, Henan 450002, China.
B Corresponding author. Email: chunsenliu@zzuli.edu.cn
Australian Journal of Chemistry 68(6) 906-911 https://doi.org/10.1071/CH14470
Submitted: 25 July 2014 Accepted: 28 August 2014 Published: 18 November 2014
Abstract
Two distinct three-dimensional (3D) CdII coordination polymers with 1,2-naphthalenedicarboxylate (ndc2–) and dipyridyl co-ligands have been synthesized under hydrothermal conditions. Interestingly, the slight difference in the two 4,4′-dipyridyl building blocks, namely, 1,2-bi(4-pyridyl)ethane (bpp) and 1,2-bi(4-pyridyl)ethene (bpe) with C–C or C=C spacers, results in the significant structural divergence of the resultant coordination polymers. Structural analysis reveals that complexes [Cd(ndc)(bpp)(H2O)]n (1) and {[Cd5(ndc)4(bpe)2(OH)2](H2O)1.5}n (2) are constructed by discrete metal–carboxylate dimeric units and metal–carboxylate chains, respectively, which are further extended by bpp or bpe linkers to form the inclined interpenetrated two-dimensional (2D)→3D network for 1 and the 3D porous framework for 2. This result reveals that the flexibility of auxiliary ligands plays an important role in the structural assemblies of coordination networks. The thermal and luminescence properties of both complexes were also investigated in solid state.
References
[1] (a) K. Uemura, K. Saito, S. Kitagawa, H. Kita, J. Am. Chem. Soc. 2006, 128, 16122.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1GjsLrL&md5=94ecc44bdd2d39543c89bd4d92133e63CAS | 17165765PubMed |
(b) K. Seki, W. Mori, J. Phys. Chem. B 2002, 106, 1380.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang, L. Wang, C.-S. Liu, J. Am. Chem. Soc. 2014, 136, 10906.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Y. Robin, K. M. Fromm, Coord. Chem. Rev. 2006, 250, 2127.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) Y. B. He, B. Li, M. O’Keeffe, B. L. Chen, Chem. Soc. Rev. 2014, 43, 5618.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Slu7jJ&md5=2a2fc91013eb6050b89c3b0f83e29200CAS |
(b) A. Nalaparaju, J. Jiang, J. Phys. Chem. C 2012, 116, 6925.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed. 2004, 43, 2334.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Robson, Dalton Trans. 2008, 5113.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) R. Custelcean, B. A. Moyer, Eur. J. Inorg. Chem. 2007, 1321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVOis74%3D&md5=e10ecff0d4d1ed6e9a17b02a97ebb214CAS |
(b) Z.-J. Lin, J. Lü, M. C. Hong, R. Cao, Chem. Soc. Rev. 2014, 43, 5867.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWrtbrF&md5=efcea5329be95d89880082fefe64e03cCAS |
(b) D. Wang, H. He, X. Chen, S. Feng, Y. Niu, D. Sun, CrystEngComm 2010, 12, 1041.
| Crossref | GoogleScholarGoogle Scholar |
(c) L.-Q. Ma, C. Abney, W.-B. Lin, Chem. Soc. Rev. 2009, 38, 1248.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application 2009 (RSC Publishing: Cambridge).
[5] (a) Y.-G. Huang, F.-L. Jiang, M.-C. Hong, Coord. Chem. Rev. 2009, 253, 2814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagtrfK&md5=056794527ab0a55a8cc57fb13e14c916CAS |
(b) H.-L. Sun, Z.-M. Wang, S. Gao, Coord. Chem. Rev. 2010, 254, 1081.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. O’Keeffe, Chem. Soc. Rev. 2009, 38, 1215.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Du, M. Chen, X.-G. Yang, J. Wen, X. Wang, S.-M. Fang, C.-S. Liu, J. Mater. Chem. A 2014, 2, 9828.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Du, M. Chen, X. Wang, J. Wen, X.-G. Yang, S.-M. Fang, C.-S. Liu, Inorg. Chem. 2014, 53, 7074.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Chen, E.-C. Sanudo, E. Jimenez, S.-M. Fang, C.-S. Liu, M. Du, Inorg. Chem. 2014, 53, 6708.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) G.-C. Ou, C.-Y. Su, J.-H. Yao, T.-B. Lu, Inorg. Chem. Commun. 2005, 8, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSlu7Y%3D&md5=b6bdc33d512e03717208d688e4af659bCAS |
(b) L.-S. Long, CrystEngComm 2010, 12, 1354.
| Crossref | GoogleScholarGoogle Scholar |
(c) C.-P. Li, Q. Yu, J. Chen, M. Du, Cryst. Growth Des. 2010, 10, 2650.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) C.-P. Li, M. Du, Chem. Commun. 2011, 47, 5958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyju78%3D&md5=76d4f4133afc7a7248d474740d6e639fCAS |
(b) H. H. Monfared, A.-C. Chamayou, S. Khajeh, C. Janiak, CrystEngComm 2010, 12, 3526.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Wu, J. Yang, Y. Liu, F. Zhuge, N. Tang, X.-J. Yang, CrystEngComm 2010, 12, 2755.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) H. R. Khavasi, B. M. M. Sadegh, Inorg. Chem. 2010, 49, 5356.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGjtr0%3D&md5=eb7f3ea1e2b6f214cc424c994eb7d6f7CAS | 20496920PubMed |
(b) Y.-B. Dong, Y.-Y. Jiang, J. Li, J.-P. Ma, F.-L. Liu, B. Tang, R.-Q. Huang, S. R. Batten, J. Am. Chem. Soc. 2007, 129, 4520.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Kanoo, K. L. Gurunatha, T. K. Maji, Cryst. Growth Des. 2009, 9, 4147.
| Crossref | GoogleScholarGoogle Scholar |
(d) C.-F. Zhuang, J.-Y. Zhang, Q. Wang, Z.-H. Chu, D. Fenske, C.-Y. Su, Chem. – Eur. J. 2009, 15, 7578.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) M. Du, X.-J. Zhao, J.-H. Guo, S. R. Batten, Chem. Commun. 2005, 4836.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeqs7rI&md5=0fb45ab036ef86538294b8e62c044457CAS |
(b) M. Du, Z.-H. Zhang, X.-G. Wang, L.-F. Tang, X.-J. Zhao, CrystEngComm 2008, 10, 1855.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Du, C.-P. Li, J.-H. Guo, CrystEngComm 2009, 11, 1536.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) G. Kumar, R. Gupta, Chem. Soc. Rev. 2013, 42, 9403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVShsLfF&md5=9c1021a64b57fe4a917f7f4219f96e36CAS | 24081027PubMed |
(b) C. E. Housecroft, Dalton Trans. 2014, 43, 6594.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Wang, Q.-G. Zhai, X.-Y. Hou, S.-N. Li, Y.-C. Jiang, M.-C. Hu, Inorg. Chem. Commun. 2014, 45, 1.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSiuro%3D&md5=e00afd3bcd5bd304eb321a8102170a4fCAS |
(b) S. Biswas, H. S. Jena, S. Goswami, S. Sanda, S. Konar, Cryst. Growth Des. 2014, 14, 1287.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) R. Cao, D. Sun, Y. Liang, M. Hong, K. Tatsumi, Q. Shi, Inorg. Chem. 2002, 41, 2087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Wht7k%3D&md5=c761dcbf9c4c32d4a2303a47e5339ba8CAS | 11952362PubMed |
(b) L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos, Chem. – Eur. J. 2006, 12, 7353.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Chen, J.-Y. Wang, C. Chen, Q. Yue, H.-M. Yuan, J.-S. Chen, S.-N. Wang, Inorg. Chem. 2003, 42, 944.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Dincă, A. F. Yu, J. R. Long, J. Am. Chem. Soc. 2006, 128, 8904.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) R. Luo, H. Xu, H.-X. Gu, X. Wang, Y. Xu, X. Shen, W. Bao, D.-R. Zhu, CrystEngComm 2014, 16, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOnu7%2FO&md5=f6a621348419e4cbe5cff5891fa3dedfCAS |
(b) S.-J. Wang, Y.-W. Tian, L.-X. You, F. Ding, K. W. Meert, D. Poelman, P. F. Smet, B.-Y. Ren, Y.-G. Sun, Dalton Trans. 2014, 43, 3462.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) L. Pan, T. Frydel, M. B. Sander, X. Huang, J. Li, Inorg. Chem. 2001, 40, 1271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFGmu7k%3D&md5=e0a02278499cc869a3027d0fa97e35b8CAS | 11300829PubMed |
(b) L. Wang, M. Yang, G. Li, Z. Shi, S. Feng, Inorg. Chem. 2006, 45, 2474.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) S. Zang, Y. Su, Y. Li, Z. Ni, Q. Meng, Inorg. Chem. 2006, 45, 174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ajsrvP&md5=ad69f10eaee591885dc0639b933de85bCAS | 16390053PubMed |
(b) L. Cui, G.-P. Yang, W.-P. Wu, H.-H. Miao, Q.-Z. Shi, Y.-Y. Wang, Dalton Trans. 2014, 43, 5823.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Sen, S. Neogi, A. Aijaz, Q. Xu, P. K. Bharadwaj, Dalton Trans. 2014, 43, 6100.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=25afc7cb9317f7346f28048acee2d3b8CAS |
(b) M. Du, X.-J. Jiang, X.-J. Zhao, Inorg. Chem. 2007, 46, 3984.
| Crossref | GoogleScholarGoogle Scholar |
(c) C.-P. Li, J. Chen, M. Du, Polyhedron 2010, 29, 463.
| Crossref | GoogleScholarGoogle Scholar |
(d) C.-P. Li, J. Chen, M. Du, CrystEngComm 2010, 12, 4392.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) F. Fu, D.-S. Li, Y.-P. Wu, X.-M. Gao, M. Du, L. Tang, X.-N. Zhang, C.-X. Meng, CrystEngComm 2010, 12, 1227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVyks70%3D&md5=e4c0acb30dbc41d64388f47098183d5aCAS |
(b) Q. Chu, G.-X. Liu, Y.-Q. Huang, X.-F. Wang, W.-Y. Sun, Dalton Trans. 2007, 4302.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q.-Y. Liu, D.-Q. Yuan, L. Xu, Cryst. Growth Des. 2007, 7, 1832.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) S.-M. Fang, Q. Zhang, M. Hu, X.-G. Yang, L.-M. Zhou, M. Du, C.-S. Liu, Cryst. Growth Des. 2010, 10, 4773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ahurjL&md5=60a3518a768e9495b935f802db065048CAS |
(b) G.-X. Liu, R.-Y. Huang, L.-F. Huang, X.-J. Kong, X.-M. Ren, CrystEngComm 2009, 11, 643.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Zhao, D.-S. Li, X.-J. Ke, B. Liu, K. Zou, H.-M. Hu, Dalton Trans. 2012, 41, 2560.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) S. R. Batten, R. Robson, Angew. Chem., Int. Ed. 1998, 37, 1460.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Du, Q. Wang, C. P. Li, X. J. Zhao, J. Ribas, Cryst. Growth Des. 2010, 10, 3285.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=a53e845eb7e543ed8f2b5515626d9a6cCAS |