Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel Electrochemiluminescence Sensor for Sensitive Determination of Carbaryl Based on Solid Phase Microextraction at NH2–Graphene–Nafion Modified Electrode

Sui Wang A B , Shasha Lv A , Wenwen Wu A and Zhiyong Guo A
+ Author Affiliations
- Author Affiliations

A Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, 315211, China.

B Corresponding author. Email: wangsui@nbu.edu.cn

Australian Journal of Chemistry 68(5) 793-799 https://doi.org/10.1071/CH14379
Submitted: 28 February 2014  Accepted: 3 August 2014   Published: 10 November 2014

Abstract

Sensitive electrochemiluminescence (ECL) detection and solid phase microextraction (SPME) using a NH2–graphene–Nafion modified glassy carbon electrode was developed for carbaryl. The NH2–graphene was synthesised and characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The main parameters that affect the extraction efficiencies, such as the buffer and sample pH, and extraction time were investigated and optimised. The introduction of NH2–graphene into Nafion improves the conductivity of the film because of its electrical conductivity. The electrode enables the determination of carbaryl in the range from 5 × 10–4 to 10 μg mL–1, and the limit of detection was 2 × 10–4 μg mL–1 at a signal-to-noise ratio of 3. The ECL intensity retained 97 % of its initial response current after storage for 10 days, indicating a good storage stability of the sensor. The relative standard deviations (RSDs) of intra-assay and inter-assay were found to be 3.5 and 5.3 %, respectively, indicating an acceptable reproducibility. Furthermore, the ECL sensor was successfully applied to the selective and sensitive quantitative determination of carbaryl in river samples, the recoveries of carbaryl ranged from 99.0 to 108.0 %, and the RSDs were less than 5.0 %, which shows good reproducibility and high precision of analysis.


References

[1]  S. Firdoz, F. Ma, X. Yue, Z. Dai, A. Kumar, B. Jiang, Talanta 2010, 83, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKkt77O&md5=55b46098bff15ca670b413bdfbca2538CAS | 21035674PubMed |

[2]  W. R. Melchert, F. R. Rocha, Talanta 2010, 81, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisF2is7g%3D&md5=e2dd37c9dfe3fba4729d75373ced7027CAS | 20188927PubMed |

[3]  D. Du, S. Chen, J. Cai, A. Zhang, Talanta 2008, 74, 766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtV2ntA%3D%3D&md5=46b0af19f2f28c5bfc84d1761123293aCAS | 18371707PubMed |

[4]  Y. Song, M. Zhang, L. Wang, L. Wan, X. Xiao, S. Ye, J. Wang, Electrochim. Acta 2011, 56, 7267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjt7fK&md5=60b5e3daecb402f17dbf6ff2431f94e9CAS |

[5]  S. Mukdasai, C. Thomas, S. Srijaranai, Anal. Methods 2013, 5, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Cht7o%3D&md5=bc60e286ac3a89fe722e2c2b6df8354dCAS |

[6]  M. M. A. Waseem, A. Nabi, Luminescence 2007, 22, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFemsLbO&md5=3ff3d1fe8daebe6520e9b1859e3485deCAS |

[7]  S. S. Petropoulou, A. Tsarbopoulos, P. A. Siskos, Anal. Bioanal. Chem. 2006, 385, 1444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVGmtLY%3D&md5=2dfb116ffa564e004d2f794a96867e83CAS | 16865341PubMed |

[8]  M. Asensio-Ramos, J. Hernández-Borges, T. M. Borges-Miquel, M. T. Rodríguez-Delgado, J. Chromatogr. A 2011, 1218, 4808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCgtr8%3D&md5=9a13a1bc17a687bb35d9290ba65e4fe4CAS | 21145553PubMed |

[9]  L. Fu, X. Liu, J. Hu, X. Zhao, H. Wang, C. Huang, X. Wang, Chromatographia 2009, 70, 1697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymsrrO&md5=53b984ef4bfe4776353204c089fd10b0CAS |

[10]  S. Totti, M. Fernández, S. Ghini, Y. Picó, F. Fini, J. Mañes, S. Girotti, Talanta 2006, 69, 724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1yju74%3D&md5=39c7c3e44a1cbd7311ba97e36f39fbd5CAS | 18970629PubMed |

[11]  Y. Ni, W. Xiao, S. Kokot, J. Hazard. Mater. 2009, 168, 1239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKitL0%3D&md5=b4610b0e82a0bb6cddadecb6edf04bceCAS | 19349118PubMed |

[12]  F. Zhao, F. Wang, W. Zhao, J. Zhou, Y. Liu, L. Zou, B. Ye, Microchim. Acta 2011, 174, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSmtbnF&md5=7aef5bf8422c42f055eca90f03731894CAS |

[13]  M. Valdés, A. Valdés González, J. García Calzón, M. E. Díaz-García, Microchim. Acta 2009, 166, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Li, J. Chen, S. Han, W. Niu, X. Liu, G. Xu, Talanta 2009, 79, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVCmu70%3D&md5=7b728ddca9ad11866043d9f8275e5845CAS | 19559859PubMed |

[15]  A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=b0bf55fad73e403bead4618c9d3a992dCAS | 17330084PubMed |

[16]  S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvF2js7g%3D&md5=3d64c03fc65b938c187aae3c41fdc0a0CAS | 16855586PubMed |

[17]  S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGkur4%3D&md5=f9b0a41b5b01245c20f5eaaed1d23c29CAS |

[18]  M. Pumera, Chem. Soc. Rev. 2010, 39, 4146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtbrM&md5=013df896b38eae594845826620bb655fCAS | 20623061PubMed |

[19]  H. Yin, Y. Zhou, Q. Ma, S. Ai, Q. Chen, L. Zhu, Talanta 2010, 82, 1193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2gsr3E&md5=44edb5190201f0c663f54e7a17e45ef1CAS | 20801318PubMed |

[20]  S. Y. Deng, J. P. Lei, Y. Huang, Y. Chen, H. X. Ju, Anal. Chem. 2013, 85, 5390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlGjs74%3D&md5=01cd48b0b7756a8fa58353b0725aa72eCAS |

[21]  W. H. Gao, Y. S. Chen, J. Xi, S. Y. Lin, Y. W. Chen, Y. J. Lin, Z. G. Chen, Biosens. Bioelectron. 2013, 41, 776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1agsrzJ&md5=8e33478ab7e8612d4735ae061393c6fbCAS |

[22]  W. H. Gao, Y. S. Chen, J. Xi, A. Zhang, Y. W. Chen, F. S. Lu, Z. G. Chen, Sens. Actuators B 2012, 171–172, 1159.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Y. Sun, K. J. Huang, S. Y. Wei, Z. W. Wu, F. P. Ren, Colloids Surf. B 2011, 84, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFOks7w%3D&md5=2cdc3752bca9cf18ca8a7343b03286edCAS |

[24]  L. Lai, L. Chen, D. Zhan, L. Sun, J. Liu, S. H. Lim, C. K. Poh, Z. Shen, J. Lin, Carbon 2011, 49, 3250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslegtrw%3D&md5=5be63d84f604284a2f93ded0984fb967CAS |

[25]  H. J. Li, S. Han, L. Z. Hu, G. B. Xu, Chinese J. Anal. Chem. 2009, 37, 1557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFKjsw%3D%3D&md5=9b206ecbb1d9dc5401c13f301c896518CAS |

[26]  S. Wang, J. Wei, T. Hao, Z. Guo, J. Electroanal. Chem. 2012, 664, 146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lsb%2FI&md5=3acbdb6253c9f6cac4848c6bbc4503bbCAS |

[27]  Y. P. Dong, J. Zhang, Y. Ding, X. F. Chu, W. B. Zhang, J. Electrochem. Soc. 2012, 159, H692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlalu7bJ&md5=fc181a88d0806fecd10dc597791b38c3CAS |

[28]  D. Du, L. Wang, Y. Shao, J. Wang, M. H. Engelhard, Y. Lin, Anal. Chem. 2011, 83, 746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Cntg%3D%3D&md5=fa97fe7212d103f599a08ece202b0cd6CAS | 21210663PubMed |

[29]  K. W. Park, J. H. Jung, J. Power Sources 2012, 199, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqt7%2FM&md5=3decb488f76bc5d2857578bb6ec7ad87CAS |

[30]  J. L. Yan, G. J. Chen, J. Cao, W. Yang, B. H. Xie, M. B. Yang, New Carbon Mater. 2012, 27, 370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVSlsr4%3D&md5=b48f377abb5448cae0765e0913a864d5CAS |

[31]  Y. P. Dong, J. Zhang, Y. Ding, X. F. Chu, J. Chen, Electrochim. Acta 2013, 91, 240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1GktbY%3D&md5=be56c49f9353d486f4441fcff0305e02CAS |

[32]  Z. Guo, S. Dong, Electroanalysis 2005, 17, 607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslejsb8%3D&md5=cad3e67e2dc3314f5fa441158f2bece0CAS |

[33]  K. J. Huang, D. J. Niu, X. Liu, Z. W. Wu, Y. Fan, Y. F. Chang, Y. Y. Wu, Electrochim. Acta 2011, 56, 2947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVGgsL8%3D&md5=3153c1d11de6c49245deecfa0eae72e0CAS |

[34]  J. Li, Y. Xu, H. Wei, T. Huo, E. Wang, Anal. Chem. 2007, 79, 5439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlOns74%3D&md5=27fb475af54fb83c5ebb0f1cd9a1b738CAS | 17567105PubMed |

[35]  Y. P. Dong, J. Lumin. 2010, 130, 1539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVGhsrg%3D&md5=46803203f3602a4cd94ce556785ec245CAS |

[36]  B. Haghighi, S. Bozorgzadeh, Anal. Chim. Acta 2011, 697, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFGksbs%3D&md5=686b1dcf43bd0ed1cef6ccb755480798CAS | 21641423PubMed |

[37]  Z. Y. Guo, P. P. Gai, T. T. Hao, J. Duan, S. Wang, J. Agric. Food Chem. 2011, 59, 5257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFyrurg%3D&md5=92d6dff1a95b9d311dfa02c4829a46fbCAS |

[38]  W. R. Melchert, F. R. P. Rocha, Int. J. Environ. Anal. Chem. 2009, 89, 969.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yrs7nM&md5=f314c12a330c979e917f30a1f5018225CAS |

[39]  E. Wang, X. Yang, M. Ye, Q. Wang, X. Cai, Chinese J. Chromatogr. 2011, 29, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ektLjJ&md5=b7eabd49c7ae261ba8caacce18feccfdCAS |

[40]  A. Waseem, M. Yaqoob, A. Nabi, M. A. Siddiqui, Int. J. Environ. Anal. Chem. 2007, 87, 825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlSlsb8%3D&md5=848c488cc2aa067fde019ddde6ae77a1CAS |

[41]  R. M. Maggio, P. C. Damiani, A. C. Olivieri, Anal. Chim. Acta 2010, 677, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGqs7%2FK&md5=3a67c4d15686cf7f40260966d16d8a44CAS | 20837177PubMed |