Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Square-Wave Voltammetric Determination of Nanomolar Levels of Linuron in Environmental Water Samples Using a Glassy Carbon Electrode Modified with Platinum Nanoparticles within a Dihexadecyl Phosphate Film

Paola D. Marreto A , Aline B. Trench A , Fernando C. Vicentini A , Luiz C. S. Figueiredo-Filho A , Roberta A. Medeiros C , Ernesto. C. Pereira A and Orlando Fatibello-Filho A B D
+ Author Affiliations
- Author Affiliations

A Departamento de Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, PO Box 676, CEP 13560-970, São Carlos/SP, Brazil.

B Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCT de Bioanalítica), Brazil.

C Centro de Engenharias e Ciências Exatas, Universidade do Oeste do Paraná, CEP 85903-000, Toledo/PR, Brazil.

D Corresponding author. Email: bello@ufscar.br

Australian Journal of Chemistry 68(5) 800-805 https://doi.org/10.1071/CH14393
Submitted: 18 June 2014  Accepted: 3 August 2014   Published: 3 November 2014

Abstract

A new sensitive method for linuron determination using a glassy carbon electrode modified with platinum nanoparticles within a dihexadecyl phosphate film (PtNPs-DHP/GCE) and square-wave voltammetry was proposed. The PtNPs-DHP/GCE was characterised by scanning electron microscopy and the diameter of the Pt nanoparticles was between 13 and 34 nm. The electrochemical behaviour of linuron was studied using cyclic voltammetry and an irreversible anodic peak was obtained at a potential of 1.2 V in 0.1 mol L–1 phosphate buffer (pH 3.0) solution. The analytical curve, obtained by square-wave voltammetry after accumulation, was linear in the linuron concentration range from 1.0 to 74.0 nmol L–1, with a detection limit of 0.61 nmol L–1. This sensitive analytical method was successfully applied for linuron determination in environmental water samples with results that showed good agreement with those obtained using a comparative HPLC method.


References

[1]  M. E. Leon-Gonzalez, A. Townshend, J. Chromatogr. A 1991, 539, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtlOqsb8%3D&md5=3de311981255fc1c201c14e1b2964b43CAS |

[2]  J. C. Cook, L. S. Mullin, S. R. Frame, L. B. Biegel, Toxicol. Appl. Pharmacol. 1993, 119, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVartr4%3D&md5=f6d9adcaf1d0d319b7b82dfeca30eb3aCAS | 8480329PubMed |

[3]  J. Ðorđević, Z. Papp, V. Guzsvany, I. Svancara, T. Trtic-Petrovic, M. Purenovic, K. Vytras, Sensors 2012, 12, 148.
         | Crossref | GoogleScholarGoogle Scholar | 22368461PubMed |

[4]  M. Kaur, A. K. Malik, B. Singh, LCGC North Am. 2011, 29, 338.
         | 1:CAS:528:DC%2BC3MXlsFSgurY%3D&md5=d09175ef091cd1a56ea79ef1d2cbb1dcCAS |

[5]  Y. C. Wang, L. Xiao, M. R. Cheng, J. Chromatogr. A 2011, 1218, 9115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSktLjL&md5=9c331242bbfcb51115da6d0ab38ba89cCAS |

[6]  S. Q. Gao, J. Y. You, X. Zheng, Y. Wang, R. B. Ren, R. Zhang, Y. P. Bai, H. Q. Zhang, Talanta 2010, 82, 1371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2gsrjP&md5=372347dfdc9c4b61f24b57b17d97d5bdCAS |

[7]  M. van Pinxteren (née Schellin), C. Bauer, P. Popp, J. Chromatogr. A 2009, 1216, 5800.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  P. Hernandez, J. Vicente, M. Gonzalez, L. Hernandez, Talanta 1990, 37, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsVOitr8%3D&md5=06e8f9845cf61d4b88bfd295974d4510CAS | 18965021PubMed |

[9]  M. J. Gonzalez de la Huebra, U. Vincent, C. von Holst, Food Addit. Contam., Part A 2011, 28, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyntA%3D%3D&md5=32485c255522732740911c2c8022548dCAS |

[10]  J. S. Ðorđević, A. M. Kalijadis, K. R. Kumric, Z. M. Jovanovic, Z. V. Lausevic, T. M. Trtic-Petrovic, Cent. Eur. J. Chem. 2012, 10, 1271.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  F. de Lima, F. Cozzi, A. R. Fiorucci, C. A. L. Cardoso, G. J. Arruda, V. S. Ferreira, Talanta 2011, 83, 1763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1OqtA%3D%3D&md5=df275d86791820d16d40014333eef92eCAS | 21238781PubMed |

[12]  R. Narayanan, M. A. El-Sayed, J. Phys. Chem. B 2005, 109, 12663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslOmtb0%3D&md5=6f88e660831f1b731844ed34f291b627CAS | 16852568PubMed |

[13]  B. Haddou, N. V. Rees, R. G. Compton, Phys. Chem. Chem. Phys. 2012, 14, 13612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOgtr7J&md5=40b6ee3e4a0d3bef2ab9c4485a975d62CAS | 22965023PubMed |

[14]  S. R. Belding, F. W. Campbell, E. J. F. Dickinson, R. G. Compton, Phys. Chem. Chem. Phys. 2010, 12, 11208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFarurrF&md5=274f0baf326d68bb0f04e7bb183df64fCAS | 20676419PubMed |

[15]  Y. G. Zhou, F. W. Campbell, S. R. Belding, R. G. Compton, Chem. Phys. Lett. 2010, 497, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCgtrrI&md5=1cf8405afaf4b00455db5397c6d36858CAS |

[16]  F. C. Vicentini, B. C. Janegitz, C. M. A. Brett, O. Fatibello-Filho, Sens. Actuators, B 2013, 188, 1101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SnsbzI&md5=2a05cc5f695ede60ab413819cce7b208CAS |

[17]  D. Brondani, C. W. Scheeren, J. Dupont, I. C. Vieira, Sens. Actuators, B 2009, 140, 252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFajsb4%3D&md5=64a1dbb796c95448b6ab8e018e426fc3CAS |

[18]  E. Zapp, D. Brondani, I. C. Vieira, C. W. Scheeren, J. Dupont, A. M. J. Barbosa, V. S. Ferreira, Sens. Actuators, B 2011, 155, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlCqsLc%3D&md5=9baab0cc0278e126c43577b8171c47f1CAS |

[19]  B. Habibi, N. Delnavaz, Int. J. Hydrogen Energy 2010, 35, 8831.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtbfE&md5=643623e51013e4093583dbfa2d20b837CAS |

[20]  H. Xu, L. Zeng, S. Xing, Y. Xian, L. Jin, Electrochem. Commun. 2008, 10, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1ansbs%3D&md5=2b70c5abbb559aeb47ba2560997860fbCAS |

[21]  S. Chatterjee, A. Chen, Anal. Chim. Acta 2012, 751, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKlu7fL&md5=754dbfd9e8e65f1de214c478ec9c603bCAS | 23084053PubMed |

[22]  F. R. Caetano, A. Gevaerd, E. G. Castro, M. F. Bergamini, A. J. G. Zarbin, L. H. Marcolino, Electrochim. Acta 2012, 66, 265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKkt7k%3D&md5=7472464d9709800b392fe8d4082bebc8CAS |

[23]  X. L. Luo, A. Morrin, A. J. Killard, M. R. Smyth, Electroanalysis 2006, 18, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFCgtbw%3D&md5=c3a86276efcd969e5d7bc3431d016d1eCAS |

[24]  H. H. Takeda, B. C. Janegitz, R. A. Medeiros, L. H. C. Mattoso, O. Fatibello-Filho, Sens. Actuators, B 2012, 161, 755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCju74%3D&md5=1966403feea455c654ee9cc7dd0d1658CAS |

[25]  B. C. Janegitz, L. C. S. Figueiredo-Filho, L. H. Marcolino, S. P. N. Souza, E. R. Pereira, O. Fatibello-Filho, J. Electroanal. Chem. 2011, 660, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrtrfP&md5=6de5741a34b55a6ebc135dab6eee7697CAS |

[26]  E. R. Sartori, F. C. Vicentini, O. Fatibello-Filho, Talanta 2011, 87, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWjsr7E&md5=3bac7dd723997204b9c4aa359de95470CAS | 22099673PubMed |

[27]  L. L. C. Garcia, L. C. S. Figueiredo-Filho, G. G. Oliveira, O. Fatibello-Filho, C. E. Banks, Sens. Actuators, B 2013, 181, 306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Cisbc%3D&md5=be5585d0e8898e767bd348c1f0bcdc7cCAS |

[28]  J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc. 1951, 11, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S. J. Konopka, B. McDuffie, Anal. Chem. 1970, 42, 1741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXhvVOmuw%3D%3D&md5=35c9b74f1a982596de5d2dbc366b5652CAS |

[30]  T. Mugadza, T. Nyokong, Talanta 2010, 81, 1373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFGls7o%3D&md5=a86228901ff27b7097550a192ee51ce7CAS | 20441910PubMed |

[31]  A. Wong, M. R. D. Lanza, M. D. T. Sotomayor, J. Electroanal. Chem. 2013, 690, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFOmtrw%3D&md5=7ae0d811bd08581f2c02653870fd6503CAS |

[32]  M. C. Santos, D. W. Miwa, S. A. S. Machado, Electrochem. Commun. 2000, 2, 692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Clt7g%3D&md5=e3c0ffea711826477845e945a7253864CAS |

[33]  M. C. Santos, L. O. S. Bulhoes, Electrochim. Acta 2004, 49, 1893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1CksLg%3D&md5=02cc037528d87e8f473c24cbf61d8779CAS |

[34]  Conselho Nacional de Meio Ambiente, RESOLUÇÃO No 20, 1986.

[35]  Canadian Council of Ministers of the Environment, Chemicals, available at http://st-ts.ccme.ca/en/index.html (accessed 10 October 2014).