Cyanobiphenyl versus Alkoxybiphenyl: Which Mesogenic Unit Governs the Mesomorphic Properties of Guanidinium Ionic Liquid Crystals?
Johannes Christian Haenle A , Manuel M. Neidhardt A , Stuart Beardsworth A , Jochen Kirres A , Angelika Baro A and Sabine Laschat A BA Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
B Corresponding author. Email: sabine.laschat@oc.uni-stuttgart.de
Australian Journal of Chemistry 67(7) 1088-1099 https://doi.org/10.1071/CH14376
Submitted: 28 March 2014 Accepted: 11 June 2014 Published: 30 June 2014
Abstract
A series of phenylguanidinium salts 3·X, which are linked via an alkoxy spacer either to a 4-decyloxy- or 4-cyano-substituted biphenyl mesogen, was prepared and the mesomorphism studied. A decyloxybiphenyl core and a spacer of at least C6 chain length were required for mesophase formation. Replacement of the chloride counterion by other anions like bromide or tetrafluoroborate improved the thermal stability of the mesophase. A comparison of substitution pattern (meta v. para) on the phenyl ring revealed decreased melting and clearing points for the bent cationic head group. All guanidinium ionic liquid crystals 3 displayed only smectic A (SmA) phases. A packing model is assumed where the molecules in a bilayer stack over each other in opposite direction with interdigitated terminal decyloxy groups and spacers.
References
[1] T. Ishikawa, Chem. Pharm. Bull. (Tokyo) 2010, 58, 1555.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFSlsrc%3D&md5=cb972920d4ece39001928286fe9fbbc0CAS | 21139254PubMed |
[2] M. P. Coles, Chem. Commun. 2009, 3659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslentLw%3D&md5=0bef196c004b3565f30822ca276ed1f9CAS |
[3] S. Herres-Pawlis, Nachr. Chem. 2009, 57, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVShu7s%3D&md5=790fc721360792af9733fbc8a402346aCAS |
[4] T. Ishikawa, T. Kumamoto, Synthesis 2006, 737.
| Crossref | GoogleScholarGoogle Scholar |
[5] A. R. Katritzky, B. V. Rogovoy, ARKIVOC 2005, 2005, 49.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. Sundermeyer, V. Raab, E. Gaoutchenova, U. Garrelts, N. Abacilar, K. Harms, in Activating Unreactive Substrates (Eds C. Bolm, F. E. Hahn) 2009, pp. 17–37 (Wiley-VCH Verlag GmbH: Weinheim).
[7] K. Vazdar, R. Kunetskiy, J. Saame, K. Kaupmees, I. Leito, U. Jahn, Angew. Chem. 2014, 126, 1459.
| Crossref | GoogleScholarGoogle Scholar |
[8] O. Bienemann, A. Hoffmann, S. Herres-Pawlis, Rev. Inorg. Chem. 2011, 31, 83.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejtrfK&md5=eeb6f7a998d3413a90d19c625fad7cc0CAS |
[9] F. T. Edelmann, in Advances in Organometallic Chemistry (Eds A. F. Hill, M. J. Fink) 2008, pp. 183–352 (Academic Press: London).
[10] M. P. Coles, Dalton Trans. 2006, 985.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGktL0%3D&md5=c724b6e2ad92741d2f760dcc9f8969b1CAS | 16474883PubMed |
[11] A. Peters, E. Kaifer, H.-J. Himmel, Eur. J. Org. Chem. 2008, 5907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosF2k&md5=66d7cf38c20f1d608535ce4372299598CAS |
[12] P. Selig, Synthesis 2013, 45, 703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotV2htL4%3D&md5=fc2668574b0bcda0e2c848c2859201caCAS |
[13] K. Nagasawa, Y. Sohtome, in Science of Synthesis, Asymmetric Organocatalysis (Eds B. List, K. Maruoka) 2012, pp. 1–40 (Thieme Medical Publishers: New York, NY).
[14] J. E. Taylor, S. D. Bull, J. M. J. Williams, Chem. Soc. Rev. 2012, 41, 2109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWls7s%3D&md5=68ecd45814da1dcf12e7107686916345CAS | 22234578PubMed |
[15] M. Odagi, K. Furukori, T. Watanabe, K. Nagasawa, Chem. – Eur. J. 2013, 19, 16740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaqs7%2FM&md5=ff04de1fa72c4712636db4a0043bf40bCAS | 24281815PubMed |
[16] D. Basavaiah, K. Venkateswara Rao, B. Sekhara Reddy, Tetrahedron Asymmetry 2006, 17, 1036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvF2iu74%3D&md5=2f9913ce099b202df3a141dc4867d339CAS |
[17] J. Y. Quek, T. P. Davis, A. B. Lowe, Chem. Soc. Rev. 2013, 42, 7326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wisb7F&md5=b8dfb3e18ebcd7b16890c076af241ac5CAS | 23549709PubMed |
[18] C. C. Huval, S. R. Holmes-Farley, W. H. Mandeville, J. S. Petersen, R. J. Sacchiero, C. Maloney, P. K. Dhal, J. Macromol. Sci. A 2004, 41, 231.
| Crossref | GoogleScholarGoogle Scholar |
[19] D. S. Kim, A. Labouriau, M. D. Guiver, Y. S. Kim, Chem. Mater. 2011, 23, 3795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVemu7%2FK&md5=b208aa2c416cfca7c80613155d3beb1aCAS |
[20] M. K. Rauf, Imtiaz-ud-Din, A. Badshah, Expert Opin. Drug Dis. 2014, 9, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFels7zN&md5=e99c32da9a3e519eba8f746524a24a64CAS |
[21] A. Mishra, S. Batra, Curr. Top. Med. Chem. 2013, 13, 2011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGns7jE&md5=166acb83465cacaa4fd1457f7a9c1993CAS | 23895095PubMed |
[22] F. Sączewski, Ł. Balewski, Expert Opin. Ther. Pat. 2013, 23, 965.
| Crossref | GoogleScholarGoogle Scholar | 23617396PubMed |
[23] R. G. S. Berlinck, A. E. Trindade-Silva, M. F. C. Santos, Nat. Prod. Rep. 2012, 29, 1382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1equ7fP&md5=cfa0dccca800c03c0481f00e53702b17CAS |
[24] S. S. Ebada, P. Proksch, Mini Rev. Med. Chem. 2011, 11, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOgu7k%3D&md5=8f0a36d63016b064041b861ad2db35feCAS | 21534931PubMed |
[25] R. G. S. Berlinck, A. C. B. Burtoloso, A. E. Trindade-Silva, S. Romminger, R. P. Morais, K. Bandeira, C. M. Mizuno, Nat. Prod. Rep. 2010, 27, 1871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVagurfO&md5=c9d6f4569186f970ae84e57609698671CAS |
[26] F. Saczewski, Ł. Balewski, Expert Opin. Ther. Pat. 2009, 19, 1417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhtLfI&md5=ac7dd4693c94bf9d095d9958495e1f9dCAS | 19780701PubMed |
[27] R. G. S. Berlinck, A. C. B. Burtoloso, M. H. Kossuga, Nat. Prod. Rep. 2008, 25, 919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKhsLrP&md5=cb9c84e15b2d8a18c491fab9958fce16CAS |
[28] R. G. S. Berlinck, M. H. Kossuga, Nat. Prod. Rep. 2005, 22, 516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFOhs7o%3D&md5=755455125ed8a645c66accb2e551c8bfCAS |
[29] S. Su, I. B. Seiple, I. S. Young, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 16490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWgtL7J&md5=a0e14eb05362a2b10a2833f59ba0380aCAS | 19049446PubMed |
[30] F. Mathevet, P. Masson, J.-F. Nicoud, A. Skoulios, J. Am. Chem. Soc. 2005, 127, 9053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSnsLc%3D&md5=3831173433286506c5767e0239fbcdc6CAS | 15969583PubMed |
[31] D. Kim, S. Jon, H.-K. Lee, K. Baek, N.-K. Oh, W.-C. Zin, K. Kim, Chem. Commun. 2005, 5509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2rurrJ&md5=d60e3fdaf341bbbf5cae77a45169e22fCAS |
[32] S. M. Martin, J. Yonezawa, M. J. Horner, C. W. Macosko, M. D. Ward, Chem. Mater. 2004, 16, 3045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1emt7g%3D&md5=090fd068dd37603f581ae37d3d244d35CAS |
[33] F. Mathevet, P. Masson, J.-F. Nicoud, A. Skoulios, Chem. – Eur. J. 2002, 8, 2248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlCqsb8%3D&md5=73a87227828b6b36d6a0dbd5b7b6f269CAS | 12012408PubMed |
[34] L. M. Antill, M. M. Neidhardt, J. Kirres, S. Beardsworth, M. Mansueto, A. Baro, S. Laschat, Liq. Cryst. 2014, 41, 976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvVyrur4%3D&md5=c4e4fa503b526ed5efd4b6fbf12ec304CAS |
[35] M. Butschies, M. Mansueto, J. C. Haenle, C. Schneck, S. Tussetschläger, F. Giesselmann, S. Laschat, Liq. Cryst. 2014, 41, 821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitlShu78%3D&md5=f0aa8979dbe6d1d8076baf504679450cCAS |
[36] M. Butschies, M. M. Neidhardt, M. Mansueto, S. Laschat, S. Tussetschläger, Beilstein J. Org. Chem. 2013, 9, 1093.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVSku7bP&md5=c24124fd0107d0fd110f54b134eaa6b2CAS | 23766823PubMed |
[37] M. Butschies, J. C. Haenle, S. Tussetschläger, S. Laschat, Liq. Cryst. 2013, 40, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKns73L&md5=8b95fd3a278b7a85f8fe8e4d886ee56aCAS |
[38] M. Butschies, W. Frey, S. Laschat, Chem. – Eur. J. 2012, 18, 3014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCnsLw%3D&md5=c8ec086d06800576f29836cf1e09b7ffCAS | 22298322PubMed |
[39] M. Butschies, S. Sauer, E. Kessler, H.-U. Siehl, B. Claasen, P. Fischer, W. Frey, S. Laschat, ChemPhysChem 2010, 11, 3752.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyrs77L&md5=6626ba087192f40a98866cc881afd33eCAS | 21086484PubMed |
[40] S. Sauer, S. Saliba, S. Tussetschläger, A. Baro, W. Frey, F. Giesselmann, S. Laschat, W. Kantlehner, Liq. Cryst. 2009, 36, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1ahtLY%3D&md5=5a631fa9ab7b7f6b5549fc0ca83b69ebCAS |
[41] S. Sauer, N. Steinke, A. Baro, S. Laschat, F. Giesselmann, W. Kantlehner, Chem. Mater. 2008, 20, 1909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2nsbw%3D&md5=45131dfedba99e8549fbd6e7722e763aCAS |
[42] T. Kato, M. Yoshio, in Electrochemical Aspects of Ionic Liquids (Ed. H. Ohno) 2011, pp. 375–392 (Wiley: Hoboken, NJ).
[43] K. V. Axenov, S. Laschat, Materials 2011, 4, 206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kltbw%3D&md5=568781f8ee63bb54c29c0d559cd76d49CAS |
[44] T. Kato, N. Mizoshita, K. Kishimoto, Angew. Chem. Int. Ed. 2006, 45, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKgsw%3D%3D&md5=20d186daa2914db34ae0073af343e88eCAS |
[45] K. Binnemans, Chem. Rev. 2005, 105, 4148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyrtbjP&md5=1809c0c7bdcd50a5c54a69550d966134CAS | 16277373PubMed |
[46] L. Douce, J.-M. Suisse, D. Guillon, A. Taubert, Liq. Cryst. 2011, 38, 1653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2rsr3P&md5=42031193149cc58aa2a150054f006486CAS |
[47] Ionic Liquids in Synthesis, 2nd edn (Eds P. Wasserscheid, T. Welton) 2008 (Wiley-VCH: Weinheim).
[48] Electrodeposition from Ionic Liquids (Eds F. Endres, D. MacFarlane, A. Abbott) 2008 (Wiley-VCH: Weinheim).
[49] Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities (Eds R. D. Rogers, K. R. Seddon) 2005, Vol. 901, ACS Symposium Series (American Chemical Society: Washington DC).
[50] Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities (Eds R. D. Rogers, K. R. Seddon) 2005, Vol. 902, ACS Symposium Series (American Chemical Society: Washington DC).
[51] Handbook of Liquid Crystals (Eds J. W. Goodby, P. J. Collings, T. Kato, C. Tschierske, H. F. Gleeson, P. Raynes) 2014, Vols 1–8 (Wiley-VCH: Weinheim).
[52] C. Tschierske, Angew. Chem. Int. Ed. 2013, 52, 8828.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Crt7bP&md5=9143aa7f331db2f388fc4902a8602c20CAS |
[53] C. Tschierske, Isr. J. Chem. 2012, 52, 935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFantbnM&md5=f44a62b2d84734e4f351ba4c73d53984CAS |
[54] G. Ungar, X. Zeng, Soft Matter 2005, 1, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFCmt7s%3D&md5=ea51df1aceaabed5547f4365e7834e19CAS |
[55] K. Goossens, P. Nockemann, K. Driesen, B. Goderis, C. Görller-Walrand, K. Van Hecke, L. Van Meervelt, E. Pouzet, K. Binnemans, T. Cardinaels, Chem. Mater. 2008, 20, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsb7O&md5=6d52b2d154783cb2e7b4c1e33626326dCAS |
[56] S. K. Pal, S. Kumar, Tetrahedron Lett. 2006, 47, 8993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyqu73I&md5=e74668ac7f0229be2c45340525cce821CAS |
[57] S. Kumar, S. K. Gupta, Tetrahedron Lett. 2010, 51, 5459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnsLfE&md5=88bf2e054dadcf813f52b85dbdfce70dCAS |
[58] J. Motoyanagi, T. Fukushima, T. Aida, Chem. Commun. 2005, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFKlug%3D%3D&md5=1d8339beddfee93e1faffbe092a9e8d4CAS |
[59] H. Yoshizawa, T. Mihara, N. Koide, Mol. Cryst. Liq. Cryst. 2004, 423, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOjsLzL&md5=eeea7b89743ed6d32fe696dea802393cCAS |
[60] L. Cui, V. Sapagovas, G. Lattermann, Liq. Cryst. 2002, 29, 1121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKgtL0%3D&md5=709bf4b13da79885698723123a7cd03bCAS |
[61] W. Davids, J. J. Roberts, W. C. J. Ross, J. Chem. Soc. 1955, 890.
| Crossref | GoogleScholarGoogle Scholar |
[62] S. K. Lee, Y. Naito, L. Shi, M. Tokita, H. Takezoe, J. Watanabe, Liq. Cryst. 2007, 34, 935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWks73O&md5=aebe0c22a7367009403951f8f7507abfCAS |
[63] W. Kantlehner, E. Haug, W. W. Mergen, P. Speh, T. Maier, J. J. Kapassakalidis, H.-J. Bräuner, H. Hagen, Liebigs Ann. Chem. 1984, 108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitV2itrg%3D&md5=66508e33d889ac14d17f4deb70eed30bCAS |
[64] J. N. Sarmousakis, M. J. D. Low, J. Phys. Chem. 1956, 60, 1139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXjslw%3D&md5=60861b88b42fb88d1f66aadd19ade0d8CAS |
[65] Y. Marcus, J. Chem. Soc., Faraday Trans. 1993, 89, 713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvF2nsrc%3D&md5=99ee6e64f3fe4657ae723c937255a712CAS |
[66] P. H. J. Kouwer, T. M. Swager, J. Am. Chem. Soc. 2007, 129, 14042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WltL3F&md5=66a4ef6475e0738ad0af8cb29c97286cCAS |
[67] N. Yamanaka, R. Kawano, W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida, J. Phys. Chem. B 2007, 111, 4763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovVai&md5=955920e8d614425c553a2eceedbc4ebbCAS | 17474701PubMed |
[68] X. Pan, M. Wang, X. Fang, C. Zhang, Z. Huo, S. Dai, Sci. China Chem. 2013, 56, 1463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKjsbjE&md5=ce02039623ecee851fca7e791beb6ba0CAS |
[69] W. S. Chi, H. Jeon, S. J. Kim, D. J. Kim, J. H. Kim, Macromol. Res. 2013, 21, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFCgsb8%3D&md5=b5d9ecda4d8d3421348657d4fb3ad1beCAS |
[70] S. Balamurugan, P. Kannan, K. Yadupati, A. Roy, J. Mol. Struct. 2011, 1001, 118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1aksbY%3D&md5=7ad25ee9fd38ed27257a3d5b08b72ee8CAS |
[71] A. Das, B. Maity, D. Koley, S. Ghosh, Chem. Commun. 2013, 49, 5757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFynsL0%3D&md5=4e14d25039af14dd56a807effc889bd9CAS |