Towards the Synthesis of Guanidinate- and Amidinate-Bridged Dimers of Mn and Ni
Francesca A. Stokes A , Lars Kloo B , Philip J. Harford A , Andrew J. Peel A , Robert J. Less A , Andrew E. H. Wheatley A C and Dominic S. Wright A CA Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
B Department of Chemistry, Royal Institute of Technology, Teknikringen 36, S-100 44, Stockholm, Sweden.
C Corresponding authors. Email: aehw2@cam.ac.uk; dsw1000@cam.ac.uk
Australian Journal of Chemistry 67(7) 1081-1087 https://doi.org/10.1071/CH14271
Submitted: 29 April 2014 Accepted: 30 May 2014 Published: 10 July 2014
Abstract
Reactions of Cp2M (Cp = cyclopentadienyl, M = Mn, Ni) with lithium amidinates and guanidinates are reported. The highly oxophilic nature of Mn leads to the isolation of the interstitial oxide Mn4O(MeN···CH···NMe)6 (4) in preference to the intended paddle-wheel homodimer Mn2(MeN···CH···NMe)4 when employing the sterically uncongested amidinate [MeN···CH···NMe]– ligand. In contrast, an analogous reaction using Cp2Ni yielded Ni2(MeN···CH···NMe)4 (5). The use of monoprotic guanidinate ligands also gave contrasting results for Mn and Ni. In the first case, the highly unusual spirocycle Mn{μ-NC(NMe2)2}4Li2·3THF (6) was produced in low yield. For M = Ni, use of the [hpp]– (1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate) ligand gives results comparable with the synthesis of 5, with Ni2(hpp)4 (7) isolated. In contrast to recent data obtained using Cp2Cr, the guanidinate ligands do not sequester coformed CpLi. Density functional theory analysis corroborates the view that the intermetal distance in each of the reported dinickel paddle-wheel complexes (2.4846(8) and 2.3753(5) Å in 5 and 7 respectively) is defined by the geometric parameters of the bidentate ligands and that intermetal bonding is not present.
References
[1] D. A. Kissounko, M. V. Zabalov, G. P. Brusova, D. A. Lemenovskii, Russ. Chem. Rev. 2006, 75, 351.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlygtLY%3D&md5=087781ea93cbeba8bcad19c851830e96CAS |
[2] M. P. Coles, Dalton Trans. 2006, 985.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGktL0%3D&md5=c724b6e2ad92741d2f760dcc9f8969b1CAS | 16474883PubMed |
[3] (a) S. R. Boss, M. P. Coles, V. Eyre-Brook, F. García, R. Haigh, P. B. Hitchcock, M. McPartlin, J. V. Morey, H. Naka, P. R. Raithby, H. A. Sparkes, C. W. Tate, A. E. H. Wheatley, Dalton Trans. 2006, 5574.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Knsg%3D%3D&md5=9f1e783abbfa50cd78f6f8afb7b4dec0CAS | 17225894PubMed |
(b) J. Haywood, A. E. H. Wheatley, Dalton Trans. 2008, 3378.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) P. J. Bailey, S. Pace, Coord. Chem. Rev. 2001, 214, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslemsbg%3D&md5=09edc379a402080417babbec943e6769CAS |
(b) S. J. Birch, S. R. Boss, M. P. Coles, R. Haigh, P. B. Hitchcock, A. E. H. Wheatley, J. Chem. Soc., Dalton Trans. 2004, 3568.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 1997, 119, 8125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1yqtrc%3D&md5=f47e548cd4fbe55daf8d70c42dc0a63eCAS |
(b) V. C. Gibson, S. K. Spitzmesser, Chem. Rev. 2003, 103, 283.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Collins, Coord. Chem. Rev. 2011, 255, 118.
| Crossref | GoogleScholarGoogle Scholar |
[6] M. P. Coles, P. B. Hitchcock, Aust. J. Chem. 2013, 66, 1124.
| 1:CAS:528:DC%2BC3sXhsFGrsL3O&md5=0626586176af8c944224ddfb51b6e416CAS |
[7] (a) M. P. Coles, P. B. Hitchcock, Eur. J. Inorg. Chem. 2004, 2662.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVKjsrw%3D&md5=540240ba871c6027d81e7c89d7de28feCAS |
(b) C. Jones, Coord. Chem. Rev. 2010, 254, 1273.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Woodruff, M. Bodensteiner, D. O. Sells, R. E. P. Winpenny, R. A. Layfield, Dalton Trans. 2011, 40, 10918.
| Crossref | GoogleScholarGoogle Scholar |
[8] B. M. Day, N. E. Mansfield, M. P. Coles, P. B. Hitchcock, Chem. Commun. 2011, 4995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKit7c%3D&md5=8a336babf79409550ef12df25baec8c0CAS |
[9] C. Fernández-Cortabitarte, F. García, J. V. Morey, M. McPartlin, S. Singh, A. E. H. Wheatley, D. S. Wright, Angew. Chem. Int. Ed. 2007, 46, 5425.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. J. Brown, M. H. Chisholm, J. C. Gallucci, Dalton Trans. 2008, 1615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVChtbw%3D&md5=7b073f5b9911b65850d08792fc085d43CAS | 18335145PubMed |
[11] F. A. Stokes, L. Kloo, Y. Lv, A. E. H. Wheatley, D. S. Wright, Chem. Commun. 2012, 11298.and references therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOltbjK&md5=aaa320187d6675d295904dd750ec4f89CAS |
[12] (a) F. A. Cotton, T. Ren, J. Am. Chem. Soc. 1992, 114, 2237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtF2ksr0%3D&md5=e2082f52c42cf9bafc9395ef9ac70d12CAS |
(b) F. A. Cotton, L. M. Daniels, C. A. Murillo, P. Schooler, J. Chem. Soc., Dalton Trans. 2000, 2007.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. J. Murray, M. Dinca, J. Yano, S. Chavan, S. Bordiga, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2010, 132, 7856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt12rs7c%3D&md5=9f76c3a71bf107ac52ba6ce9a29ea4b8CAS | 20481535PubMed |
[14] (a) F. A. Cotton, C. A. Murillo, I. Pascual, Inorg. Chem. 1999, 38, 2182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Kiurg%3D&md5=f1d6bab98c41687c20b7b638db173d03CAS | 11671004PubMed |
(b) S. Hao, S. Gambarotta, C. Bensimon, J. J. H. Edema, Inorg. Chim. Acta 1999, 213, 65.
(c) F. A. Cotton, C. A. Murillo, I. Pascual, Inorg. Chem. Commun. 1999, 2, 101.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. A. Cotton, L. M. Daniels, C. A. Murillo, P. Schooler, J. Chem. Soc., Dalton Trans. 2000, 2001.
| Crossref | GoogleScholarGoogle Scholar |
[15] Y.-C. Tsai, C. W. Hau, J.-S. K. Yu, G. H. Lee, Y. Wang, T.-S. Kuo, Angew. Chem. Int. Ed. 2008, 47, 7250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFyqsLnO&md5=3a5f88018d6f0cfec6d672910ef5f9e9CAS |
[16] E. C. Taylor, W. A. Ehrhart, J. Org. Chem. 1963, 28, 1108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXms1altg%3D%3D&md5=8c41c8c4727be537354940e3787a1609CAS |
[17] R. A. Layfield, Chem. Soc. Rev. 2008, 37, 1098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlSisLg%3D&md5=292328c814c860a7336df07bbfde26bcCAS | 18497923PubMed |
[18] (a) R. A. Layfield, J. A. McAllister, M. McPartlin, J. M. Rawson, D. S. Wright, Chem. Commun. 2001, 1956.
(b) C. S. Alvarez, A. Bashall, E. McInnes, R. A. Layfield, M. McPartlin, J. M. Rawson, D. S. Wright, Chem. – Eur. J. 2006, 12, 3053.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) J. Garcia-Álvarez, A. R. Kennedy, J. Klett, R. E. Mulvey, Angew. Chem. Int. Ed. 2007, 46, 1105.
| Crossref | GoogleScholarGoogle Scholar |
(b) V. L. Blair, W. Clegg, B. Conway, E. Hevia, A. Kennedy, J. Klett, R. E. Mulvey, L. Russo, Chem. – Eur. J. 2008, 14, 65.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. L. Blair, W. Clegg, R. E. Mulvey, L. Russo, Inorg. Chem. 2009, 48, 8863.
| Crossref | GoogleScholarGoogle Scholar |
[20] R. E. Mulvey, V. L. Blair, W. Clegg, A. R. Kennedy, J. Klett, L. Russo, Nat. Chem. 2010, 2, 588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVSiurk%3D&md5=58822195d19924cc2db567b6cd9558dcCAS | 20571579PubMed |
[21] C. S. Alvarez, S. R. Boss, J. Burley, S. M. Humphrey, R. A. Layfield, R. A. Kowenicki, M. McPartlin, J. M. Rawson, A. E. H. Wheatley, P. T. Wood, D. S. Wright, Dalton Trans. 2004, 3481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFOhsrc%3D&md5=cde61a46233c962483b53678e881825eCAS | 15510266PubMed |
[22] C. Brinkmann, F. García, J. V. Morey, M. McPartlin, S. Singh, A. E. H. Wheatley, D. S. Wright, Dalton Trans. 2007, 1570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVSjs7o%3D&md5=fd873f967eb4be4ff2ab1851d1e22c9cCAS | 17426857PubMed |
[23] C. S. Alvarez, D. Cave, A. D. Bond, E. A. Harron, R. A. Layfield, M. E. G. Mosquera, C. M. Pask, M. McPartlin, J. M. Rawson, P. Wood, D. S. Wright, Dalton Trans. 2003, 3002.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. S. Alvarez, A. D. Bond, E. A. Harron, R. A. Layfield, J. A. McAllister, C. M. Pask, J. M. Rawson, D. S. Wright, Organometallics 2001, 20, 4135.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. Wilkinson, F. A. Cotton, J. M. Birmingham, J. Inorg. Nucl. Chem. 1956, 2, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28Xksl2hsA%3D%3D&md5=aa8570ccacfdd6bdcde66390336bdf34CAS |
[26] (a) J. N. van Niekerk, F. R. L. Schoening, J. H. Talbot, Acta Crystallogr. 1953, 6, 720.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXhs1U%3D&md5=6d8da7e1fc0e53a8c66ad3b8414c206eCAS |
(b) A. V. Capilla, R. A. Aranda, Cryst. Struct. Comm. 1979, 8, 795.
[27] A. R. Kennedy, J. Klett, R. E. Mulvey, S. Newton, D. S. Wright, Chem. Commun. 2008, 308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1GltA%3D%3D&md5=34fef517d56096ed795330e82e9b2626CAS |
[28] C. M. Zaleski, T.-C. Weng, C. Dendrinou-Samara, M. Alexiou, P. Kanakaraki, W.-Y. Hsieh, J. Kampf, J. E. Penner-Hahn, V. L. Pecoraro, D. P. Kessissoglou, Inorg. Chem. 2008, 47, 6127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGrtLk%3D&md5=7636525533408ca34e5fce077de4ec08CAS | 18537236PubMed |
[29] (a) E. Gallo, E. Solari, S. De Angelis, C. Floriani, N. Re, A. Chiesi-Villa, C. Rizzoli, J. Am. Chem. Soc. 1993, 115, 9850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Wnt7Y%3D&md5=e3e505060d9a02922b5d26fcee01ee30CAS |
(b) F. A. Cotton, L. M. Daniels, L. R. Falvello, J. H. Matonic, C. A. Murillo, X. Wang, H. Zhou, Inorg. Chim. Acta 1997, 266, 91.
| Crossref | GoogleScholarGoogle Scholar |
[30] (a) F. A. Cotton, M. Matusz, R. Poli, Inorg. Chem. 1987, 26, 1472.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVKlu74%3D&md5=63a287336d236a930f8478101d9545aeCAS |
(b) C. Lin, J. D. Protasiewicz, T. Ren, Inorg. Chem. 1996, 35, 7455.
| Crossref | GoogleScholarGoogle Scholar |
[31] See Supplementary Material.
[32] S. D. Bunge, J. A. Bertke, T. L. Cleland, Inorg. Chem. 2009, 48, 8037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVelsL0%3D&md5=d8477a2d7aed927a74ed00eaceed36e8CAS | 19624099PubMed |
[33] R. J. Morris, G. S. Girolami, Organometallics 1989, 8, 1478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitlWrsL4%3D&md5=24d8a072e8c81fec117a67314ffcf6cbCAS |
[34] A. A. Danopoulos, G. Wilkinson, T. K. N. Sweet, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1994, 1037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvFygtr4%3D&md5=e6c87283cdfc92892fce88486f0fd5ceCAS |
[35] R. A. Lewis, G. Wu, T. W. Hayton, Inorg. Chem. 2011, 50, 4660.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1GlurY%3D&md5=0627ad14f7c209a52ec46dc1cd6342bfCAS | 21486021PubMed |
[36] F. A. Cotton, C. A. Murillo, R. A. Walton, Multiple Bonds Between Metal Atoms 2005 (Springer: New York, NY).
[37] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 09 (Revision A.02) 2004 (Gaussian, Inc.: Wallingford, CT).
[38] T. Kottke, D. Stalke, J. Appl. Cryst. 1993, 26, 615.
| Crossref | GoogleScholarGoogle Scholar |
[39] G. M. Sheldrick, Acta Crystallogr. A 1990, 46, 467.
| Crossref | GoogleScholarGoogle Scholar |
[40] G. M. Sheldrick, SHELXL-97 Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen, Germany).
[41] A. L. Spek, Acta Crystallogr. D 2009, 65, 148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWhtL8%3D&md5=a9c50a75a7815702d5b19f87c0993a23CAS | 19171970PubMed |