Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Fabrication of High Efficiency Dye-Sensitised Solar Cell with Zirconia-Doped TiO2 Nanoparticle and Nanowire Composite Photoanode Film

D. Maheswari A and P. Venkatachalam B C
+ Author Affiliations
- Author Affiliations

A Research & Development Center, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.

B Department of Physics (DDE), Annamalai University, Annamalainagar, Tamil Nadu 608 002, India.

C Corresponding author. Email: pvchalamphyamu@yahoo.co.in

Australian Journal of Chemistry 68(6) 881-888 https://doi.org/10.1071/CH14364
Submitted: 7 June 2014  Accepted: 26 August 2014   Published: 5 November 2014

Abstract

Dye-sensitised solar cells (DSSCs) were fabricated based on coumarin NKX-2700 dye-sensitised zirconia-doped TiO2 nanoparticle and nanowire composite photoanode film and quasi-solid-state electrolyte, sandwiched together with cobalt sulfide-coated counter electrode. Novel photoanodes were prepared using composite mixtures of 90 wt-% TiO2 nanoparticles + 10 wt-% TiO2 nanowires (TNPWs) as base material and zirconia as doping metal. Hafnium oxide (HfO2) was applied on the zirconia-doped TNPWs (zirconia/TNPWs) film structure as a blocking layer. TiO2 nanoparticles, TiO2 nanowires, and zirconia/TNPWs were characterised by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The sensitising organic dye coumarin, NKX-2700, displayed maximum absorption wavelength (λmax) at 525 nm, which could be observed from the UV-visible spectrum. DSSC-1 built with zirconia/TNPWs-doped photoanode with blocking layer revealed enhanced photo-current efficiency (PCE) as compared with other DSSCs and illustrated photovoltaic parameters: short circuit current JSC = 20 mA m–2, open circuit voltage (VOC = 730 mV, fill factor (FF) = 68 %, and PCE (η) = 9.93 %. The electron transport and charge recombination behaviours of DSSCs were investigated by electrochemical impedance spectroscopy and the results exhibited that DSSC-1 possessed the lowest charge transfer resistance (Rrec) and longest electron lifetime (τrec) compared with other DSSCs. Therefore, from the present investigation, it could be concluded that the improved performance of DSSC-1 is ascribed to the zirconia/TNPWs-doped photoanode with the blocking layer increasing the short circuit current, electron transport, and suppressing the recombination of charge carriers at the photoanode/dye/electrolyte interface.


References

[1]  M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. M. Wang, J. Am. Chem. Soc. 2004, 126, 14943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKgtLw%3D&md5=6ceda5c01c1d7a7fd540f0093b8812a4CAS | 15535722PubMed |

[2]  W. S. Chae, S. W. Lee, Y. R. Kim, Chem. Mater. 2005, 17, 3072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Kmu7Y%3D&md5=0a70e4eef8dc852d1d4064a83a8e4019CAS |

[3]  B. O’Regan, M. Gratzel, Nature 1991, 353, 737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XoslOn&md5=e0f1ad2123127b2412948dbe76c34d67CAS |

[4]  Q. Zhang, G. Cao, Nano Today 2011, 6, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslGhsLk%3D&md5=3d9536fb42f2e34ad04cd5dbf62ca489CAS |

[5]  J. Jiu, S. Isoda, F. Wang, M. Adachi, J. Phys. Chem. B 2006, 110, 2087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFWhuw%3D%3D&md5=512024011f2cce2121b65b095178fed6CAS | 16471788PubMed |

[6]  Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, Phys. Chem. Chem. Phys. 2005, 7, 4157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GltrfJ&md5=7963a4d200b10fa02bada7bd068c423dCAS | 16474882PubMed |

[7]  X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Nano Lett. 2008, 8, 3781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSlsrfK&md5=7ae7c08b070fc35288b7c80fd285dfb5CAS | 18954124PubMed |

[8]  S. Chappel, S. G. Chen, A. Zaban, Langmuir 2002, 18, 3336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslensrg%3D&md5=f0a241ac62aa6eebc27d80f2674fe8f4CAS |

[9]  A. Kay, M. Gratzel, Chem. Mater. 2002, 14, 2930.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslOit7s%3D&md5=38ecc9a59662a8d915dd3a945bf577bfCAS |

[10]  I. Hod, M. Shalom, Z. Tachan, S. Ruhle, A. Zaban, J. Phys. Chem. C 2010, 114, 10015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslymurg%3D&md5=dec91ab74da5d3ef3db667c9bd6219ceCAS |

[11]  E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J. Am. Chem. Soc. 2003, 125, 475.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVens78%3D&md5=8802432afbadf4818678033f47729b31CAS | 12517161PubMed |

[12]  J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero, J. Am. Chem. Soc. 2004, 126, 13550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslGqt7g%3D&md5=cea7bf2c62240eb4ae4257af01aa4caaCAS | 15479112PubMed |

[13]  Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, J. Phys. Chem. B 2003, 107, 1977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVarsrk%3D&md5=fb65a6a2651b4e05f8ed01f6cea12564CAS |

[14]  Y. Diamant, S. Chappel, S. G. Chen, O. Melamed, A. Zaban, Coord. Chem. Rev. 2004, 248, 1271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFGntbo%3D&md5=350e12ba590128ebf2ae444f0813b017CAS |

[15]  S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, Chem. Mater. 2001, 13, 4629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFCqsLc%3D&md5=2a99e6260e641dfdb2455f5a8936934aCAS |

[16]  B. Králik, E. K. Chang, S. G. Louie, Phys. Rev. B 1998, 57, 7027.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. Wang, E. M. Jin, J. Y. Park, W. L. Wang, X. G. Zhao, H. B. Gu, Nanoscale Res. Lett. 2012, 7, 98.
         | Crossref | GoogleScholarGoogle Scholar | 22297154PubMed |

[18]  P. Ramasamy, M.-S. Kang, H.-J. Cha, J. Kim, Mater. Res. Bull. 2013, 48, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WnurnJ&md5=e8a55dd4ae79df9803a348a4bbf4f164CAS |

[19]  D. B. Menzies, R. Cervini, Y.-B. Cheng, G. P. Simon, L. Spiccia, J. Sol-Gel Sci. Technol. 2004, 32, 363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlKksLo%3D&md5=65fc64ca1fc786991913e791548e68d8CAS |

[20]  K.-h. Park, E.-m. Jin, H.-b. Gu, S.-d. Yoon, E.-m. Han, J.-j. Yun, Appl. Phys. Lett. 2010, 97, 023302.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  K. Manoharan, N. G. Joby, P. Venkatachalam, Ionics 2014, 20, 887.
         | 1:CAS:528:DC%2BC3sXhvFOks7bE&md5=6fcdee2f85585a0a2058863fde28bac1CAS |

[22]  B. Bills, M. Shanmugam, M. F. Baroughi, Thin Solid Films 2011, 519, 7803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2hu7rL&md5=02540eac709d4cbf9fa14f1a9b0520f0CAS |

[23]  K. Hara, Z.-S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, J. Phys. Chem. B 2005, 109, 15476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFWntL0%3D&md5=a67d3f81f5ca39ec393a5959bf42bc2dCAS | 16852963PubMed |

[24]  Z. S. Wang, Y. K. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, Adv. Mater. 2007, 19, 1138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsV2iu7Y%3D&md5=5824b861ca4b985567a23a9539ad341fCAS |

[25]  E. Stathatos, P. Lianos, Chem. Mater. 2003, 15, 1825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1eqtrw%3D&md5=605fc878482ac266917bda89095a1a57CAS |

[26]  W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, J. Phys. Chem. B 2003, 107, 4374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVaqtb4%3D&md5=f9bfe4e2f52e04e580ccd5a316cb5244CAS |

[27]  J. H. Wu, Z. Lan, J. M. Lin, M. L. Huang, S. C. Hao, T. Sato, S. Yin, Adv. Mater. 2007, 19, 4006.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaht77E&md5=b6c6daded44aa66c88bca89dc6bfe512CAS |

[28]  P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nat. Mater. 2003, 2, 402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1ars70%3D&md5=3e38d814d691029806efb51efa18a272CAS | 12754500PubMed |

[29]  J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Pure Appl. Chem. 2008, 80, 2241.
         | 1:CAS:528:DC%2BD1cXhsVaiu73F&md5=36f16e5db9fd01ba627fcbbbb1b4b5baCAS |

[30]  C. H. Lee, S. W. Rhee, H. W. Choi, Nanoscale Res. Lett. 2012, 7, 48.
         | Crossref | GoogleScholarGoogle Scholar | 22222095PubMed |

[31]  M. Law, L. E. Greene, J. C. Johnson, R. Saykally, Nat. Mater. 2005, 4, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Cit7o%3D&md5=dd62a88ed0ae39f0c6a46e0878f3a7efCAS | 15895100PubMed |

[32]  B. N. Narayanan, Z. Yaakob, R. Koodathil, S. Chandralayam, S. Sugunan, F. K. Saidu, V. Malayatti, Eur. J. Sci. Res. 2009, 28, 566.

[33]  K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 2003, 107, 597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSntLg%3D&md5=1804b56617eaaaad857cf40f29523735CAS |

[34]  K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Sol. Energy Mater. Sol. Cells 2003, 77, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Gntbk%3D&md5=ae3ab79bd9e8a85d344f91d7a8655c04CAS |

[35]  Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, S. Baik, ACS Nano 2011, 5, 5088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlylsr8%3D&md5=7c311a07a01d5cedba94a379332ff873CAS | 21598982PubMed |

[36]  Q. Hu, C. Wu, L. Cao, B. Chi, J. Pu, L. Jian, J. Power Sources 2013, 226, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVymtLo%3D&md5=791e16f49193cee368141c22de0dda8cCAS |

[37]  G. Schlichthorl, N. G. Park, A. J. Frank, J. Phys. Chem. B 1999, 103, 782.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 2002, 47, 4213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFWks7w%3D&md5=cb225245be912b59f43e9499ac108dd4CAS |

[39]  N. G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, D. K. Kim, J. Van de Lagemaat, K. D. Benkstein, A. J. Frank, Langmuir 2004, 20, 4246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislamsb0%3D&md5=e4a3828da4a3d0414909d789f6713346CAS | 15969424PubMed |

[40]  J. Bisquert, J. Phys. Chem. B 2002, 106, 325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFSlurY%3D&md5=a1bb4da2ae7c5cf545edd6a915f41ae9CAS |

[41]  M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B 2006, 110, 13872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFKgsbw%3D&md5=b3da5fac3e92cf712f24d4495f3eac12CAS | 16836336PubMed |

[42]  B. Tan, Y. Wu, J. Phys. Chem. B 2006, 110, 15932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFKksL0%3D&md5=331f1fed9159f59268fe648e5371947bCAS | 16898747PubMed |

[43]  J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu, J. S. Chen, Nanotechnology 2008, 19, 105702.
         | Crossref | GoogleScholarGoogle Scholar | 21817710PubMed |

[44]  J. Nelson, R. E. Chandler, Coord. Chem. Rev. 2004, 248, 1181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFGntLk%3D&md5=0d98d42129f3d3ffcdade4455c9b39f7CAS |