Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Cationic Charged Polymer Vesicles from Amphiphilic PEI-g-PSSA-g-PEI as Potential Gene Delivery Vehicles

Liandong Feng A , Xinyu Hu A , Aming Xie B , Hao Yu A , Yangyang Liu B , Jianfa Zhang A and Wei Dong A B C
+ Author Affiliations
- Author Affiliations

A Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China.

B School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

C Corresponding author. Email: weidong@njust.edu.cn

Australian Journal of Chemistry 68(5) 806-813 https://doi.org/10.1071/CH14350
Submitted: 31 May 2014  Accepted: 4 August 2014   Published: 21 October 2014

Abstract

Polymer vesicles have attracted extensive interest for a variety of biomedical applications. Herein, novel polymer vesicles are prepared by the self-assembly of amphiphilic polyethyleneimine-g-poly(disulfide amine)-g-polyethyleneimine (PEI-g-PSSA-g-PEI) for gene delivery. To investigate the effect of hydrophobicity on transfection efficiency, a small series of PEI-g-PSSA-g-PEI were prepared under uniform conditions containing PEI fragments of the same molecular weight. The hydrophobicity of PEI-g-PSSA-g-PEI was adjusted by varying the hydrophobic content in the poly(disulfide amine) backbone and by choosing hydrophobic monomers ranging in length from C12 to C16. The hydrophobicity of polymers was also related to DNA binding affinity. Polymer vesicles obtained from the water-insoluble polymers condensed with DNA into polyplexes with sizes below 200 nm and surface charge ranging from +10 to +35 mV that were suitable for cell endocytosis. DNA polyplexes exhibited an inverted hexagonal structure, observed by transmission electron microscopy. The results of in vitro transfection demonstrate that the hydrophobic–hydrophilic balance of copolymers greatly affects their transfection properties. The top-performing polymer, II-70 %, showed improved transfection efficiency and significantly lower cytotoxicity on COS-7 cells when compared with commercial reagents polyethyleneimine (PEI 25K) and Lipofectamine 2000. These results indicate that cationic polymer vesicles with tunable hydrophobicity are promising materials for gene delivery.


References

[1]  D. E. Discher, A. Eisenberg, Science 2002, 297, 967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1Clsbs%3D&md5=337e2102f73ac14be73a0fcfd5df9be9CAS | 12169723PubMed |

[2]  M. Antonietti, S. Forster, Adv. Mater. 2003, 15, 1323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjtbk%3D&md5=c32903e2a8f3eda45498faee688286d8CAS |

[3]  G. Srinivas, D. E. Discher, M. L. Klein, Nat. Mater. 2004, 3, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlGiurk%3D&md5=316706c9fcc538dc5d14c7fa4ea20b7eCAS | 15300242PubMed |

[4]  I. W. Hamley, Soft Matter 2005, 1, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSgu7c%3D&md5=30dc167c90a2dca0a309b9670660e244CAS |

[5]  A. Blanazs, S. P. Armes, A. J. Ryan, Macromol. Rapid Commun. 2009, 30, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFelu7k%3D&md5=40a27929efcea4defa4e67afde9a5aefCAS | 21706604PubMed |

[6]  N. V. Salim, T. L. Hanley, L. Waddington, P. G. Hartley, Q. Guo, Macromol. Rapid Commun. 2012, 33, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyiu74%3D&md5=f8a2cc0dde460ad0eac2fd236abe6b75CAS | 22282132PubMed |

[7]  W. C. Huang, W. H. Chiang, S. J. Lin, Y. J. Lan, H. L. Chen, C. S. Chern, H. C. Chiu, Adv. Funct. Mater. 2012, 22, 2267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVWkurs%3D&md5=387ef0a361f26d8ed45a5db863ce18c2CAS |

[8]  F. H. Meng, Z. Y. Zhong, J. Feijen, Biomacromolecules 2009, 10, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlartg%3D%3D&md5=566c8bd7ead01ef53a2ea125c79870b8CAS |

[9]  A. Lalatsa, A. G. Schatzlein, M. Mazza, T. B. H. Le, I. F. Uchegbu, J. Control. Release 2012, 161, 523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVegtLc%3D&md5=569b5d8dcc6824e2951319e38a57b954CAS | 22613882PubMed |

[10]  L. X. Zhao, N. N. Li, K. M. Wang, C. H. Shi, L. L. Zhang, Y. X. Luan, Biomaterials 2014, 35, 1284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCms7nM&md5=dd109fa4c71c1bfe48f4032a7e1c0a30CAS |

[11]  H. Lomas, I. Canton, S. MacNeil, J. Du, S. P. Armes, A. J. Ryan, A. L. Lewis, G. Battaglia, Adv. Mater. 2007, 19, 4238.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlQ%3D&md5=3d0dbeba7f801eaffe5fc0cc7ca692aaCAS |

[12]  T. O. Pangburn, K. Georgiou, F. S. Bates, E. Kokkoli, Langmuir 2012, 28, 12816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVynsr%2FJ&md5=f0ceb9b224f442277301c063d9402adbCAS | 22827285PubMed |

[13]  R. B. Arote, E. S. Lee, H. L. Jiang, Y. K. Kim, Y. J. Choi, M. L. Cho, C. S. Cho, Bioconjug. Chem. 2009, 20, 2231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGrt73P&md5=de1cfa8d6ff80658d7fd942ebccab89aCAS | 19928954PubMed |

[14]  W. T. Godbey, K. K. Wu, A. G. Mikos, J. Biomed. Mater. Res. 1999, 45, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVequrw%3D&md5=e5378f16180eb770d6970258a253cde2CAS | 10397985PubMed |

[15]  R. R. Sawant, S. K. Sriraman, G. Navarro, S. Biswas, R. A. Dalvi, V. P. Torchilin, Biomaterials 2012, 33, 3942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWkur0%3D&md5=bbac01def96c4271cb7bba5021e5f66cCAS | 22365809PubMed |

[16]  A. Neamnark, O. Suwantong, R. K. Bahadur, C. Y. Hsu, P. Supaphol, H. Uludag, Mol. Pharm. 2009, 6, 1798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFehurnN&md5=4f73cdb5681ada621ae940e0d7f82f5bCAS | 19719326PubMed |

[17]  D. G. Anderson, W. Peng, A. Akinc, N. Hossain, A. Kohn, R. Padera, R. Langer, J. A. Sawicki, Proc. Natl. Acad. Sci. USA 2004, 101, 16028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGis7%2FE&md5=a111bed886cacc82559b8082b8582a65CAS | 15520369PubMed |

[18]  D. G. Anderson, A. Akinc, N. Hossain, R. Langer, Mol. Ther. 2005, 11, 426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVOju78%3D&md5=62f36f9c03a10de57a507a5fc1acf2cfCAS | 15727939PubMed |

[19]  D. M. Lynn, D. G. Anderson, D. Putnam, R. Langer, J. Am. Chem. Soc. 2001, 123, 8155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVKisLo%3D&md5=a4f5a826f2e8f1f4d9794f508021d6f5CAS | 11506588PubMed |

[20]  A. Akinc, D. G. Anderson, D. M. Lynn, R. Langer, Bioconjug. Chem. 2003, 14, 979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVyns70%3D&md5=8c738c8c1c6692bb66c378d9061cfa84CAS | 13129402PubMed |

[21]  D. G. Anderson, D. M. Lynn, R. Langer, Angew. Chem. Int. Ed. 2003, 42, 3153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvF2hsb0%3D&md5=b5ec2e8420941982b4f58992fbbdd6ecCAS |

[22]  A. Akinc, D. Lynn, D. Anderson, R. Langer, J. Am. Chem. Soc. 2003, 125, 5316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFagtrY%3D&md5=b00cb661b3d402479855aaa052a0843fCAS | 12720443PubMed |

[23]  A. Akinc, D. G. Anderson, D. M. Lynn, R. Langer, Bioconjug. Chem. 2003, 14, 979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVyns70%3D&md5=8c738c8c1c6692bb66c378d9061cfa84CAS | 13129402PubMed |

[24]  E. Emilitri, E. Ranucci, P. Ferruti, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVOmurw%3D&md5=e495173b5092cd07f9c16a65e9893fbeCAS |

[25]  G. T. Zugates, W. Peng, A. Zumbuehl, S. Jhunjhunwala, Y. H. Huang, R. Langer, J. A. Sawicki, D. G. Anderson, Mol. Ther. 2007, 15, 1306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVejtL3J&md5=1b180dd5276d16100891d7536848661eCAS | 17375071PubMed |

[26]  J. Sunshine, J. J. Green, K. P. Mahon, F. Yang, A. A. Eltoukhy, D. N. Nguyen, R. Langer, D. G. Anderson, Adv. Mater. 2009, 21, 4947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WltLrP&md5=7b0640d3a842ac245103d3125203ca49CAS | 25165411PubMed |

[27]  C. Lin, Z. Y. Zhong, M. C. Lok, X. L. Jiang, W. E. Hennink, J. Feijen, J. Control Release 2007, 123, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2qsLbF&md5=996f64a797f3ca863229cc4949d5e108CAS | 17728001PubMed |

[28]  C. Lin, Z. Y. Zhong, M. C. Lok, X. L. Jiang, W. E. Hennink, J. Feijen, J. F. J. Engbersen, Bioconjug. Chem. 2007, 18, 138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit77E&md5=9e3cecd5d3f6bd5ac482729cf6906a84CAS | 17226966PubMed |

[29]  T. Kim, M. Ou, M. H. Lee, S. W. Kim, Biomaterials 2009, 30, 658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVensr%2FI&md5=d4be8ffd61dcb0ecfcba769b3a8bf6a5CAS | 19007981PubMed |

[30]  V. Incani, A. Lavasanifar, H. Uludag, Soft Matter 2010, 6, 2124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVKis74%3D&md5=edb1eb69cb14789dd2f546766a3fcc24CAS |

[31]  O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, J. P. Behr, Proc. Natl. Acad. Sci. USA 1995, 92, 7297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlKmt7s%3D&md5=78c4bfa8c7834655f832f4f5d6f4b1b7CAS | 7638184PubMed |

[32]  M. Ogris, P. Steinlein, M. Kursa, K. Mechtler, R. Kircheis, E. Wagner, Gene Ther. 1998, 5, 1425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1Wmtbg%3D&md5=3b17d31e61bf74c2ad2abc35bfb6b903CAS | 9930349PubMed |

[33]  J. B. Zhou, J. Liu, C. J. Cheng, T. R. Patel, C. E. Weller, J. M. Piepmeier, Z. Z. Jiang, W. M. Saltzman, Nat. Mater. 2012, 11, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGkurfN&md5=248bb312bc8ef12a49fa0543909c4407CAS |

[34]  A. A. Eltoukhy, D. Chen, C. A. Alabi, R. Langer, D. G. Anderson, Adv. Mater. 2013, 25, 1487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFGgug%3D%3D&md5=20f48ad8f95c5e1b650f500acb5c88f5CAS | 23293063PubMed |

[35]  J. Z. Deng, Y. X. Sun, H. Y. Wang, C. Li, F. W. Huang, S. X. Cheng, R. X. Zhuo, X. Z. Zhang, Acta Biomater. 2011, 7, 2200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFensrg%3D&md5=ababaab5c92c735d5548b34dcb1cb900CAS | 21300185PubMed |

[36]  T. K. Endres, M. B. Broichsitter, O. Samsonova, T. Renette, T. H. Kissel, Biomaterials 2011, 32, 7721.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSqt7rK&md5=b6cd3c3cc3d6ca946cb6fd3ef0cb4822CAS | 21782238PubMed |

[37]  L. Liu, M. Y. Zheng, T. Renette, T. Kissel, Bioconjug. Chem. 2012, 23, 1211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlSmtrw%3D&md5=d3cc32a3bcbec8243ae266fcd3902d17CAS | 22548308PubMed |

[38]  K. Sugihara, M. Chami, I. Derényi, J. Vörös, T. Zambelli, ACS Nano 2012, 6, 6626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFChtLzJ&md5=e77566cc132960ea3d4b732d1cad0e01CAS | 22861494PubMed |

[39]  J. Barauskas, M. Johnsson, F. Tiberg, Nano Lett. 2005, 5, 1615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslers7Y%3D&md5=4280bff87472d240b155776a9e32fcbaCAS | 16089498PubMed |

[40]  I. Koltover, T. Salditt, J. O. Rädler, C. R. Safinya, Science 1998, 281, 78.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVOnsb8%3D&md5=90348f9de466a30f954b1977acce46dbCAS | 9651248PubMed |

[41]  J. Wu, M. E. Lizarzaburu, M. J. Kurth, L. Liu, H. Wege, M. A. Zern, M. H. Nantz, Bioconjugate Chem. 2001, 12, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKgsrc%3D&md5=0a5927cc2db64ad3e504fcf97889ae28CAS |