Nonstabilised Azomethine Ylids from N-Oxides: Unravelling the Deprotonation of N-Methylmorpholine N-Oxide
Paul Malek Mirzayans A , Elizabeth H. Krenske A and Craig M. Williams A BA School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia.
B Corresponding author. Email: c.williams3@uq.edu.au
Australian Journal of Chemistry 67(9) 1309-1317 https://doi.org/10.1071/CH14217
Submitted: 4 April 2014 Accepted: 7 May 2014 Published: 4 June 2014
Abstract
Nonstabilised azomethine ylids (NAYs) are useful 1,3-dipoles, but their synthetic applications are restricted by the high temperatures often needed for their generation, and by an incomplete understanding of the effect of heteroatoms in cyclic systems. We have examined the behaviour of N-methylmorpholine N-oxide (NMO) as a NAY precursor in the Roussi reaction (low-temperature reaction of an N-oxide with strong base). The choice of base is critical to achieving cycloadduct formation. We report synthetic and computational (density functional theory) investigations of the products obtained with different bases and their mechanisms of formation.
References
[1] (a) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFKrtr8%3D&md5=86480bc58288a8077aff14dbfda75097CAS | 16011324PubMed |
(b) W. H. Pearson, P. Stoy, Synlett 2003, 903.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Vedejs, F. G. West, Chem. Rev. 1986, 86, 941.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. V. Gothelf, K. A. Jorgensen, Chem. Rev. 1998, 98, 863.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. Najera, J. M. Sansano, Curr. Org. Chem. 2003, 7, 1105.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. M. Harwood, R. J. Vickers, in Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products (Eds. A. Padwa, W. H. Pearson) 2003, Vol. 59, Ch. 3, pp. 169–252.
[2] (a) See for example: I. Coldham, S. Jana, L. Watson, N. G. Martin, Org. Biomol. Chem. 2009, 7, 1674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKqs7k%3D&md5=a3547596ea2dc7495d4ef6897805e68aCAS | 19343256PubMed |
(b) N. Shimada, Y. Abe, S. Yokoshima, T. Fukuyama, Angew. Chem. Int. Ed. 2012, 51, 11824.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. M. Burrell, I. Coldham, L. Watson, N. Oram, C. D. Pilgram, N. G. Martin, J. Org. Chem. 2009, 74, 2290.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. J. M. Burrell, I. Coldham, N. Oram, Org. Lett. 2009, 11, 1515.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. J. M. Burrell, I. Coldham, Curr Org Synth 2010, 7, 312.
| Crossref | GoogleScholarGoogle Scholar |
(f) C. Fang, C. S. Shanahan, D. H. Paull, S. F. Martin, Angew. Chem. Int. Ed. 2012, 51, 10596.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) See for example: C. Ménard-Moyon, N. Izard, E. Doris, C. Mioskowski, J. Am. Chem. Soc. 2006, 128, 6552.
| Crossref | GoogleScholarGoogle Scholar | 16704243PubMed |
(b) V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, A. Hirsch, J. Am. Chem. Soc. 2002, 124, 760.
| Crossref | GoogleScholarGoogle Scholar |
[4] See for example: S. Pandiancherri, D. W. Lupton, Tetrahedron Lett. 2011, 52, 671.and references therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFCrtA%3D%3D&md5=199e73053d08651102dcb905184a57faCAS |
[5] See for example: R. J. Carra, M. T. Epperson, D. Y. Gin, Tetrahedron 2008, 64, 3629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlyrurk%3D&md5=26c7c82fcf3ef352e30b3b38d994e858CAS | 18443655PubMed |
[6] (a) See for example: P. Deprez, J. Royer, H.-P. Husson, Tetrahedron: Asymmetry 1991, 2, 1189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1yks78%3D&md5=b65008b05c8c1b6d1bcbffddb166c899CAS |
(b) P. Deprez, J. Rouden, A. Chiaroni, C. Riche, J. Royer, H.-P. Husson, Tetrahedron Lett. 1991, 32, 7531.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) R. Beugelmans, G. Negron, G. Roussi, J. Chem. Soc., Chem. Commun. 1983, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVGntLs%3D&md5=18211279123065ef31539d9ea2a1957dCAS |
(b) G. Roussi, Trends Org. Chem. 1993, 4, 101.
[8] (a) For additional examples, see: S. Takano, Y. Sugihara, K. Ogasawara, Heterocycles 1992, 34, 1519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmvVWl&md5=f2e75023ec63919af418c7cfb147ca32CAS |
(b) J. E. Davoren, D. L. Gray, A. R. Harris, D. M. Nason, W. Xu, Synlett 2010, 2490.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. De, J. F. DeBernardis, R. Prasad, Synth. Commun. 1988, 18, 481.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Negrón, A. Fuentes, M. Romero, G. Madrid, R. Cruz, Rev. Soc. Quím. Méx. 1999, 43, 123.
[9] (a) D. Bernier, U. K. Efelscheid, S. Woodward, Org. Prep. Proced. Int. 2009, 41, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslaqurg%3D&md5=3bf5a0bb63a435dc0baf2cf29287cc7cCAS |
(b) A. Albini, Synthesis 1993, 263.
| Crossref | GoogleScholarGoogle Scholar |
[10] G. Roussi, Heterocycles 1990, 31, 1445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1OgsQ%3D%3D&md5=8a2fc84b5378c76435995bd22c0e263eCAS |
[11] R. Beugelmans, L. Bemadjilal-Iguestira, J. Chastanet, G. Negron, G. Roussi, Can. J. Chem. 1985, 63, 725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkt1ansro%3D&md5=005b19b77817b448446ae5da99500c7bCAS |
[12] J. Chastanet, G. Roussi, J. Org. Chem. 1988, 53, 3808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkslehtbY%3D&md5=ef96bac9dfbda9fabe0f8c5baa17214bCAS |
[13] G. Negron, G. Roussi, J. Zhang, Heterocycles 1992, 34, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Khsb4%3D&md5=5cf2aa11b01ca381a212608ab402334cCAS |
[14] G. Roussi, J. Zhang, Tetrahedron 1991, 47, 5161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltlGrtL4%3D&md5=11c73f9a696ccd8fed0634b8c18bd6ceCAS |
[15] (a) J. Chastanet, H. Fathallah, G. Negron, G. Roussi, Heterocycles 1992, 34, 1565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1GjtA%3D%3D&md5=853916da360cd4886bd2ce8e636032d7CAS |
(b) J. Chastanet, G. Roussi, G. Negrón, Carbohydr. Res. 1995, 268, 301.
| Crossref | GoogleScholarGoogle Scholar |
[16] G. Roussi, J. Zhang, Tetrahedron Lett. 1991, 32, 1443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVymsLc%3D&md5=41e9baa33bf55c05ec65fcce0ec99a16CAS |
[17] (a) J. Chastanet, G. Roussi, J. Org. Chem. 1985, 50, 2910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkslWitLY%3D&md5=c6889a3ab394b31267f0acd39b1badd9CAS |
(b) J. Chastanet, G. Roussi, Heterocycles 1985, 23, 653.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. Schlosser, Pure Appl. Chem. 1988, 60, 1627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXls1KltA%3D%3D&md5=6753598c5af993aa43f8daffac92874aCAS |
[19] (a) A. C. Cope, N. A. Lebel, J. Am. Chem. Soc. 1960, 82, 4656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXjvVSrtw%3D%3D&md5=146a052fcb48f1b287348531294ecc44CAS |
(b) C. H. DePuy, R. W. King, Chem. Rev. 1960, 60, 431.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. O. House, D. T. Manning, D. G. Melillo, L. F. Lee, O. R. Haynes, B. E. Wilkes, J. Org. Chem. 1976, 41, 855.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. St. C. Black, J. E. Doyle, Aust. J. Chem. 1978, 31, 2317.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Ciganek, J. Org. Chem. 1990, 55, 3007.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. Ciganek, J. M. Read, J. C. Calabrese, J. Org. Chem. 1995, 60, 5795.
| Crossref | GoogleScholarGoogle Scholar |
(g) W. Oppolzer, A. C. Spivey, C. G. Bochet, J. Am. Chem. Soc. 1994, 116, 3139.
| Crossref | GoogleScholarGoogle Scholar |
(h) N. J. Cooper, D. W. Knight, Tetrahedron 2004, 60, 243.
| Crossref | GoogleScholarGoogle Scholar |
(i) E. H. Krenske, E. C. Davison, I. T. Forbes, J. A. Warner, A. L. Smith, A. B. Holmes, K. N. Houk, J. Am. Chem. Soc. 2012, 134, 2434.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) For this work, sodium N,N-diisopropylamide (NDA) was generated in situ from n-butyl lithium, N,N-diisopropylamine and sodium t-butoxide in THF using a similar procedure to that described by L. Lochmann, J. Trekoval, J. Organomet. Chem. 1979, 179, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktFagtg%3D%3D&md5=ad1fb344863342fcc9d739c27596c360CAS |
(b) For isolation of NDA see: T. Munguia, Z. A. Bakir, F. Cervantes-Lee, A. Metta-Magana, K. H. Pannell, Organometallics 2009, 28, 5777.
| Crossref | GoogleScholarGoogle Scholar |
[21] P. E. Eaton, C.-H. Lee, Y. Xiong, J. Am. Chem. Soc. 1989, 111, 8016.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFartL4%3D&md5=531e58e2624b169aa7d3ef5864d53fefCAS |
[22] (a) D. B. Collum, Acc. Chem. Res. 1992, 25, 448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslWnur0%3D&md5=47cbfad692103149bb5a6f236010b676CAS |
(b) R. E. Mulvey, S. D. Robertson, Angew. Chem. Int. Ed. 2013, 52, 11470.
| Crossref | GoogleScholarGoogle Scholar |
[23] D. Grierson, Org. React. 1990, 39, 85.
| 1:CAS:528:DyaK3cXmtFSqsbk%3D&md5=073594e7e210885e547ffe36bc5c02f9CAS |
[24] A. Porzelle, C. M. Williams, Synthesis 2006, 3025.
| 1:CAS:528:DC%2BD28XhtFCgs73F&md5=9a2922702b5036b935c95b3d7587c1acCAS |
[25] (a) T. Rosenau, A. Potthast, P. Kosma, C.-L. Chen, J. S. Gratzl, J. Org. Chem. 1999, 64, 2166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1elsb8%3D&md5=6464eea4cb8c5f7120ec6ef7c3ebf8c2CAS |
(b) T. Rosenau, A. Potthast, P. Kosma, Tetrahedron 2002, 58, 9809.
| Crossref | GoogleScholarGoogle Scholar |
(c) For further studies on the degradation of NMO, see: T. Rosenau, A. Potthast, P. Kosma, Tetrahedron 2004, 60, 301.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Liebner, P. Schmid, C. Adelwöhrer, T. Rosenau, Tetrahedron 2007, 63, 11817.
| Crossref | GoogleScholarGoogle Scholar |
(e) Furthermore, see: T. Rosenau, A. Potthast, H. Sixta, P. Kosma, Prog. Polym. Sci. 2001, 26, 1763.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) E. Taylor, I. J. Turchi, Chem. Rev. 1979, 79, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvVKrsLY%3D&md5=5d43e603f3fea627c9507573a8155d84CAS |
(b) R. Huisgen, Angew. Chem. Int. Ed. Engl. 1980, 19, 947.[Angew. Chem. 1980, 92, 979].
| Crossref | GoogleScholarGoogle Scholar |
(c) T. M. V. D. Pinho e Melo, Eur. J. Org. Chem. 2006, 2873.
| Crossref | GoogleScholarGoogle Scholar |
[27] An alternative pathway, calculated to be low in energy, involves ring closure by intramolecular alkylation of iminium cation 26.
[28] Using the radical trapping agent γ-tocopherol, Kosma and co-workers identified the radical intermediates derived from reduction of NMO (4) with FeII, MnII, or CoII salts. Radical pathways were shown to lead to decomposition of NMO (4) to N-methyl morpholine, morpholine, and formaldehyde. See: T. Rosenau, A. Potthast, H. Sixta, P. Kosma, Tetrahedron 2002, 58, 3073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Cmsr8%3D&md5=f6fae32f10fcf4b0495bacbbefd5e8d6CAS |
[29] (a) A. Katritzky, J. Chem. Soc. B 1971, 1330.
| 1:CAS:528:DyaE3MXksVygsrc%3D&md5=ff0498738d5e90b5d448e54798850174CAS |
(b) Y. Shvo, E. D. Kaufman, J. Org. Chem. 1981, 46, 2148.and references therein.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Pohl, M. Dračínský, L. Slavětínská, M. Buděšínský, Magn. Reson. Chem. 2011, 49, 320.
| Crossref | GoogleScholarGoogle Scholar |
[30] D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd edn 1988 (Pergamon Press: Oxford).
[31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 2009 (Gaussian, Inc.: Wallingford, CT).
[32] (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |
(b) A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=636d5604c58597fccf087b0e7eabe219CAS |
(b) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar |
[34] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=b322b0fff21ba5ddb7cbe0a3d5b09758CAS | 19366259PubMed |
[35] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
| Crossref | GoogleScholarGoogle Scholar | 20423165PubMed |
[36] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsF2isL0%3D&md5=51208c53e50fdcc79b3eb5889e37ecccCAS | 21370243PubMed |