Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Enantioselective Pd-Catalysed Deallylative γ-Lactonisation of Propargyl Carbazolone Allyl Carbonates: Mechanistic Insight into their Decarboxylative Allylation

Quillon Simpson A , Robert Konrath A and David W. Lupton A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: david.lupton@monash.edu

Australian Journal of Chemistry 67(9) 1353-1356 https://doi.org/10.1071/CH14211
Submitted: 3 April 2014  Accepted: 9 April 2014   Published: 13 May 2014

Abstract

Subjection of N-methyl carbazolone allyl carbonates bearing a propargyl side chain to Pd0 catalysis leads to the formation of enantioenriched γ-lactones, rather than the expected products of decarboxylative allylation. This side reaction has not been observed with the enantioselective decarboxylative allylation of related β-ketoesters, and provides evidence for a mechanism involving turnover limiting decarboxylation from the palladium carboxylate resting state. Following lactonisation, the Pd0 catalyst is regenerated by PdII reductive alkyne coupling.


References

[1]  (a) For reviews on carbazole natural products: A. W. Schmidt, K. R. Reddy, H.-J. Knölker, Chem. Rev. 2012, 112, 3193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFGitLw%3D&md5=82314c280963a001745e3cc64dc206b3CAS | 22480243PubMed |
      (b) T. Janosik, N. Wahlström, J. Bergman, Tetrahedron 2008, 64, 9159.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For pioneering contributions: D. C. Behenna, B. M. Stoltz, J. Am. Chem. Soc. 2004, 126, 15044.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVals74%3D&md5=6a75d64467ea84d07dabb123306683abCAS | 15547998PubMed |
      (b) B. M. Trost, J. Y. Xu, J. Am. Chem. Soc. 2005, 127, 2846.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) For selected reviews on decarboxylative allylation see: J. D. Weaver, A. Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVehtQ%3D%3D&md5=38ffdcd3959db32b379d0a5463b66d5dCAS | 21235271PubMed |
      (b) J. T. Mohr, B. M. Stoltz, Chem. Asian J. 2007, 2, 1476.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, 2745.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) C. J. Gartshore, D. W. Lupton, Angew. Chem. Int. Ed. 2013, 52, 4113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGlsL4%3D&md5=aeefe59fbe0fea4348f37c3a753a2f6eCAS |
      (b) C. J. Gartshore, D. W. Lupton, Aust. J. Chem. 2013, 66, 882.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Z. Li, S. Zhang, S. Wu, X. Shen, L. Zou, F. Wang, X. Li, F. Peng, H. Zhang, Z. Shao, Angew. Chem. Int. Ed. 2013, 52, 4117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVelsrs%3D&md5=b79432b09dad9a6f8752a7b7ffba3908CAS |

[6]  (a) Y. Wei, D. Zhao, D. Ma, Angew. Chem. Int. Ed. 2013, 52, 49.
      (b) S.-X. Zhang, X.-L. Shen, Z.-Q. Li, L.-W. Zhou, F.-Q. Wang, H.-B. Zhang, Z.-H. Shao, J. Org. Chem. 2013, 78, 11444.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X.-L. Shen, R.-R. Zhao, M.-J. Mo, F.-Z. Peng, H.-B. Zhang, Z.-H. Shao, J. Org. Chem. 2014, 79, 2473.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. Y. Hong, M. R. Krout, T. Jensen, N. B. Bennett, A. M. Harned, B. M. Stoltz, Angew. Chem. Int. Ed. 2011, 50, 2756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGhurk%3D&md5=949bac300dd965a355b0cccd2eae782cCAS |

[8]  B. M. Trost, R. N. Bream, J. Xu, Angew. Chem. Int. Ed. 2006, 45, 3109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFKnsbo%3D&md5=4a832bf8785fc47d1298d86119c20622CAS |

[9]  (a) Y. Fukuda, H. Shiragami, K. Utimoto, H. Nozaki, J. Org. Chem. 1991, 56, 5816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFyrt7k%3D&md5=c3f997be7ce3ee707620ea4d2d0234e4CAS |
      (b) T. Hosokawa, S.-I. Murahashi, Heterocycles 1992, 33, 1079.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Kotora, E. Negishi, Synthesis 1996, 121.
      (d) C. Lambert, K. Utimoto, H. Nozaki, Tetrahedron Lett. 1984, 25, 5323.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) K. Utimoto, Pure Appl. Chem. 1983, 55, 1845.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. Mandai, K. Ohta, N. Baba, M. Kawada, J. Tsuji, Synlett 1992, 671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtFahtr0%3D&md5=2507f34811d5f58e106cdb8b7e2ce594CAS |

[11]  For reactions with PdII coupling of the vinyl palladium intermediate: A. Arcadi, A. Burini, S. Cacchi, M. Delmastro, F. Marinelli, B. R. Pietroni, J. Org. Chem. 1992, 57, 976.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFWisw%3D%3D&md5=f98c69f92f9b89018555d9ba7e6f150dCAS |

[12]  Yield calculated based on the stoichiometry required for both products.

[13]  (a) For examples of PdII-catalysed alkyne dimerisation see: Q. Liu, D. J. Burton, Tetrahedron Lett. 1997, 38, 4371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFOisLs%3D&md5=cf07030abfae71344d13c6eaaf295f2aCAS |
      (b) A. S. Batsanov, J. C. Collings, I. J. S. Fairlamb, J. P. Holland, J. A. K. Howard, Z. Lin, T. B. Marder, A. C. Parsons, R. M. Ward, J. Zhu, J. Org. Chem. 2005, 70, 703.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) For selected mechanistic studies on the decarboxylative allylation see: J. A. Keith, D. C. Behenna, N. Sherden, J. T. Mohr, S. Ma, S. C. Marinescu, R. J. Nielsen, J. Oxgaard, B. M. Stoltz, W. A. Goddard, J. Am. Chem. Soc. 2012, 134, 19050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFygt73J&md5=7d9a678caf43e2ecefaefd3676a464a6CAS | 23102088PubMed |
      (b) B. M. Trost, J. Xu, T. Schmidt, J. Am. Chem. Soc. 2009, 131, 18343.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Chattopadhyay, R. Jana, V. W. Day, J. T. Douglas, J. A. Tunge, Org. Lett. 2010, 12, 3042.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  N. H. Sherden, D. C. Behenna, S. C. Virgil, B. M. Stoltz, Angew. Chem. Int. Ed. 2009, 48, 6840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrtrvK&md5=070a7aa61ce0802b438795b6f81f1a0eCAS |