Studies of the Structure, Amidicity, and Reactivity of N-Chlorohydroxamic Esters and N-Chloro-β,β-dialkylhydrazides: Anomeric Amides with Low Resonance Energies*
Stephen A. Glover A B , Adam A. Rosser A and Robert M. Spence AA Chemistry, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
B Corresponding author. Email: sglover@une.edu.au
Australian Journal of Chemistry 67(9) 1344-1352 https://doi.org/10.1071/CH14270
Submitted: 29 April 2014 Accepted: 19 May 2014 Published: 19 June 2014
Abstract
Density functional calculations have been carried out to determine the properties of the title anomeric amides. At the B3LYP/6-31G(d) level, N-chloro-N-methoxyacetamide 8a is computed to be strongly pyramidal at nitrogen with a long amide bond that is untwisted. N-Chloro-N-dimethylaminoacetamide 9a is completely planar, but its amide bond is still much longer than that in N,N-dimethylacetamide 4. This is a steric, rather than a resonance, effect. COSNAR and a trans-amidation method calculate low resonance energies for both model amides, which is attributed to the combined electronegativity of the heteroatoms at the amide nitrogen and the strong anomeric effect when there is a chlorine substituent on nitrogen. When M06 and ωB97X-D dispersion-corrected density functional methods are used with the expanded 6-311++G(d,p) basis set, the resonance energies of 8a (–34 kJ mol–1) and 9a (–49 kJ mol–1) are in line with the gross electronegativity of the substituent atoms. Unlike other anomeric amides, 8a and 9a are not predicted to undergo HERON reactivity.
References
[1] S. A. Glover, Tetrahedron 1998, 54, 7229.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFWktL4%3D&md5=8b145d854086ce4480b7a7f84e363d4fCAS |
[2] S. A. Glover, in Advances in Physical Organic Chemistry (Ed. J. Richard) 2008, Vol. 42, pp. 35–123 (Elsevier: London).
[3] S. A. Glover, in The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Part 2 (Eds Z. Rappoport, J. F. Liebman) 2009, pp. 839–923 (Wiley: Chichester).
[4] V. G. Shtamburg, O. V. Shishkin, R. I. Zubatyuk, S. V. Kravchenko, A. V. Tsygankov, A. V. Mazepa, E. A. Klots, R. G. Kostyanovsky, Mendeleev Commun. 2006, 16, 323.
| Crossref | GoogleScholarGoogle Scholar |
[5] V. G. Shtamburg, O. V. Shishkin, R. I. Zubatyuk, S. V. Kravchenko, A. V. Tsygankov, V. V. Shtamburg, V. B. Distanov, R. G. Kostyanovsky, Mendeleev Commun. 2007, 17, 178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVelsrzK&md5=c23fd23fe4ceb7140db03445964f22c2CAS |
[6] V. G. Shtamburg, A. T. Tsygankov, O. V. Shishkin, R. I. Zubatyuk, B. V. Uspensky, V. V. Shtamburg, A. V. Mazepa, R. G. Kostyanovsky, Mendeleev Commun. 2012, 22, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVylsrk%3D&md5=72b2787b3348381ab9f0f67523ba5b7fCAS |
[7] A.-M. E. Gillson, S. A. Glover, D. J. Tucker, P. Turner, Org. Biomol. Chem. 2003, 1, 3430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFGku7s%3D&md5=8503b2052f69ebe5bcfa6f569f4e6a1fCAS |
[8] S. A. Glover, G. Mo, A. Rauk, D. Tucker, P. Turner, J. Chem. Soc., Perkin Trans. 2 1999, 2053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFKltrw%3D&md5=eb0985e03e7429e15c000fa78488205cCAS |
[9] S. A. Glover, J. M. White, A. A. Rosser, K. M. Digianantonio, J. Org. Chem. 2011, 76, 9757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCiurjK&md5=784e577331fd74430fb16cd67d470a3fCAS | 22017195PubMed |
[10] A. Rauk, S. A. Glover, J. Org. Chem. 1996, 61, 2337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Cgs7o%3D&md5=3f8e94e5f4dcf5161d0191f9d379c464CAS |
[11] S. A. Glover, A. Rauk, J. Chem. Soc., Perkin Trans. 2 2002, 1740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVeitLk%3D&md5=d4d837ebea1f92c4034b340deb5baeabCAS |
[12] S. A. Glover, A. Rauk, J. Org. Chem. 1999, 64, 2340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1yit7g%3D&md5=8bcb59af8249bfe1fb00b566c9677c62CAS |
[13] K. M. Digianantonio, S. A. Glover, J. P. Johns, A. A. Rosser, Org. Biomol. Chem. 2011, 9, 4116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFyhtLY%3D&md5=897643d2c0c772f63d94f685ae669835CAS | 21499599PubMed |
[14] F. K. Winkler, J. D. Dunitz, J. Mol. Biol. 1971, 59, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkvFahtrY%3D&md5=fc2b46063ffd26e1db36071fdc8f9038CAS | 5283751PubMed |
[15] J. D. Dunitz, X-Ray Analysis and Structure of Organic Molecules 1979 (Cornell University Press: London).
[16] S. A. Glover, A. A. Rosser, A. Taherpour, B. W. Greatrex, Aust. J. Chem. 2014, 67, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Wrs7g%3D&md5=7cdfce7890217a413c1214e6d515e856CAS |
[17] S. A. Glover, A. A. Rosser, J. Org. Chem. 2012, 77, 5492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslGqs78%3D&md5=46b5fb7554e7ec6a6e11280500bca52bCAS | 22646836PubMed |
[18] S. A. Glover, A. A. Rosser, J. Phys. Org. Chem. 2014,
| Crossref | GoogleScholarGoogle Scholar |
[19] S. A. Glover, A. Rauk, J. M. Buccigross, J. J. Campbell, G. P. Hammond, G. Mo, L. E. Andrews, A.-M. E. Gillson, Can. J. Chem. 2005, 83, 1492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVarsQ%3D%3D&md5=21f7247064e31a76bfdec1a1cf57afcaCAS |
[20] J. M. Buccigross, S. A. Glover, J. Chem. Soc., Perkin Trans. 2 1995, 595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlCmsLw%3D&md5=faa86a4619abce2efa9a06e123cfb2fdCAS |
[21] J. M. Buccigross, S. A. Glover, G. P. Hammond, Aust. J. Chem. 1995, 48, 353.
| 1:CAS:528:DyaK2MXktFGjs7o%3D&md5=34521f9c4b78e60a12dbd2f8f73d627fCAS |
[22] S. A. Glover, G. Mo, A. Rauk, Tetrahedron 1999, 55, 3413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslyhsro%3D&md5=87785c3da65ee6e96bac100581b931dcCAS |
[23] S. A. Glover, G. Mo, J. Chem. Soc., Perkin Trans. 2 2002, 1728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVeitL4%3D&md5=4242898a72c7ef64eb5d8eac8ff67bc4CAS |
[24] J. J. Campbell, S. A. Glover, J. Chem. Res. (M) 1999, 8, 2075.
[25] S. A. Glover, in Merck Index Fourteenth Edition (Ed. M. J. O’Neil) 2006, p. ONR-43 (Merck & Co., Inc.: Whitehouse Station, NJ).
[26] J. P. Johns, A. van Losenoord, C. Mary, P. Garcia, D. S. Pankhurst, A. A. Rosser, S. A. Glover, Aust. J. Chem. 2010, 63, 1717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaqsbvF&md5=930e933e8a897c822b34255ade4d0711CAS |
[27] K. L. Cavanagh, S. A. Glover, H. L. Price, R. R. Schumacher, Aust. J. Chem. 2009, 62, 700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2muro%3D&md5=058eaa346316762c69ce0f5a331ed248CAS |
[28] M. V. De Almeida, D. H. R. Barton, I. Bytheway, J. A. Ferriera, M. B. Hall, W. Liu, D. K. Taylor, L. Thomson, J. Am. Chem. Soc. 1995, 117, 4870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1SrtLg%3D&md5=009b12df018890046d43ed608d9eee87CAS |
[29] L. M. Thomson, M. B. Hall, J. Phys. Chem. A 2000, 104, 6247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVCktLc%3D&md5=36fdb177a0d3c3e66674ebf39ad7e67aCAS |
[30] N. Zhang, R. Yang, D. Zhang-Negrerie, Y. Du, K. Zhao, J. Org. Chem. 2013, 78, 8705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Chs7bF&md5=380252df5a7b45a0f87b44401d97f429CAS | 23926941PubMed |
[31] A. Greenberg, D. T. Moore, T. D. DuBois, J. Am. Chem. Soc. 1996, 118, 8658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFeks78%3D&md5=62e677af118e1f8769335c9a6de8f78fCAS |
[32] A. Greenberg, in The Amide Linkage. Structural Significance in Chemistry, Biochemistry and Materials Science (Eds A. Greenberg, C. M. Breneman, J. F. Liebman) 2003, pp. 47–83 (John Wiley & Sons, Inc.: New York, NY).
[33] A. J. Kirby, I. V. Komarov, P. D. Wothers, N. Feeder, Angew. Chem. Int. Ed. 1998, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1Ogurw%3D&md5=3d9d39a8858297401c6a98d7989615bfCAS |
[34] A. J. Kirby, I. V. Komarov, N. Feeder, J. Chem. Soc., Perkin Trans. 2 2001, 522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1agu7c%3D&md5=f32466bff21d03c21a4b514e77ea82f0CAS |
[35] N. D. Epiotis, W. R. Cherry, S. Shaik, Y. L. Yates, F. Bernardi, Structural Theory of Organic Chemistry, 1977 (Springer-Verlag: Berlin).
[36] E. L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds 1994 (John Wiley & Sons, Inc.: New York, NY).
[37] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=78694ab799c17471eb4f1547406dfe71CAS |
[38] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCksbfO&md5=b65571635ddde35df4e28a9d8c46aa76CAS | 18989472PubMed |
[39] S. Grimme, WIREs Comput. Mol. Sci. 2011, 1, 211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVGlu70%3D&md5=27998b4e174af3ecc7f821ef0e237d15CAS |
[40] S. A. Glover, A. Goosen, C. W. McCleland, J. L. Schoonraad, J. Chem. Soc., Perkin Trans. 1 1984, 2255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFegu7c%3D&md5=f59dbf7575cedad1a3e94cff45c2cadfCAS |
[41] S. A. Glover, A. Goosen, C. W. McCleland, J. L. Schoonraad, Tetrahedron 1987, 43, 2577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsFaisg%3D%3D&md5=7e341bde38a27c3082926f9035a09402CAS |
[42] S. A. Glover, C. A. Rowbottom, A. P. Scott, J. L. Schoonraad, Tetrahedron 1990, 46, 7247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVWrtbo%3D&md5=47850cb9db9fa0fd22e13baffd47d98dCAS |
[43] R. G. Gerdes, S. A. Glover, J. F. Ten Have, C. A. Rowbottom, Tetrahedron Lett. 1989, 30, 2649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjsFerug%3D%3D&md5=a753b8707e03e7e7c86744c723368463CAS |
[44] J. J. Campbell, S. A. Glover, C. A. Rowbottom, Tetrahedron Lett. 1990, 31, 5377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlajsQ%3D%3D&md5=c58a2c466a2cb49d1ce930e53549c314CAS |
[45] J. J. Campbell, S. A. Glover, G. P. Hammond, C. A. Rowbottom, J. Chem. Soc., Perkin Trans. 2 1991, 2067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVGgtbw%3D&md5=05cfd21576fd26a0ac93875148b58cd1CAS |
[46] A. M. Bonin, S. A. Glover, G. P. Hammond, J. Chem. Soc., Perkin Trans. 2 1994, 1173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlCmt7o%3D&md5=ef001634806637087eef249842864d0eCAS |
[47] S. A. Glover, G. P. Hammond, A. M. Bonin, J. Org. Chem. 1998, 63, 9684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFKls7s%3D&md5=1fbc864b27f056b835bba5e7e2c029c9CAS |
[48] J. J. Campbell, S. A. Glover, J. Chem. Res. (S) 1999, 8, 474.
| Crossref | GoogleScholarGoogle Scholar |
[49] A. M. Bonin, T. M. Banks, J. J. Campbell, S. A. Glover, G. P. Hammond, A. S. Prakash, C. A. Rowbottom, Mutat. Res. 2001, 494, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVGqsbs%3D&md5=02e6979bb1559096544eac37c07c2039CAS | 11423351PubMed |
[50] L. E. Andrews, T. M. Banks, A. M. Bonin, S. F. Clay, A.-M. E. Gillson, S. A. Glover, Aust. J. Chem. 2004, 57, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKhsL4%3D&md5=a55936dbafb72709dec9ebeb59b24ac0CAS |
[51] T. M. Banks, A. M. Bonin, S. A. Glover, A. S. Prakash, Org. Biomol. Chem. 2003, 1, 2238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWqsrc%3D&md5=e91de7bea421a0b59a73264679ba0a4eCAS | 12945693PubMed |
[52] L. E. Andrews, A. M. Bonin, L. E. Fransson, A.-M. E. Gillson, S. A. Glover, Mutat. Res. 2006, 605, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFCqtLg%3D&md5=a0b8233841b43a09034b5d3d4e934a1dCAS | 16698311PubMed |
[53] S. A. Glover, R. R. Schumacher, A. M. Bonin, L. E. Fransson, Mutat. Res. 2011, 722, 32.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVCgsbo%3D&md5=047166d743ef7a961a82403e790df0f9CAS | 21356327PubMed |
[54] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
[55] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=5b6aaebe0235eedcc65b0c15054348b5CAS |
[56] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFOiuw%3D%3D&md5=d6d8c4ff635808d8fc8f495692273ba4CAS |
[57] W. J. Hehre, L. Radom, P. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory 1986 (John Wiley & Sons: New York, NY).
[58] Spartan10 for Macintosh 2010. 1.1.0 2010 (Wavefunction Inc.: Irvine, CA).
[59] M. J. Frisch et al., Gaussian 03, Revision E.01 2005 (Gaussian, Inc.: Wallingford, CT).
[60] R. L. Hinman, J. Am. Chem. Soc. 1956, 78, 1645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XnslCmtg%3D%3D&md5=9e000bba6f9eb5aadcc9cf3abaee075cCAS |