Aerosol-Assisted Chemical Vapour Deposition for Iron Selenide Thin Films from Single Source Ferrocene-Incorporated Selenourea Precursor in the Presence of Surfactants
Raja Azadar Hussain A , Amin Badshah A C , Farida Yasmin A , Malik Dilshad Khan A and Muhammad Nawaz Tahir BA Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
B Department of Physics, University of Sargodha, Punjab, Pakistan.
C Corresponding author. Email: aminbadshah@yahoo.com
Australian Journal of Chemistry 68(2) 298-306 https://doi.org/10.1071/CH14088
Submitted: 6 January 2014 Accepted: 28 April 2014 Published: 9 July 2014
Abstract
This article presents the synthesis and characterisation (Fourier transform infrared spectroscopy, 1H NMR and 13C NMR spectroscopy, CHNS (carbon, hydrogen, nitrogen, sulfur) analysis, atomic absorption spectrometry, and single-crystal X-ray diffraction) of a single source molecular precursor 1-(2-fluorolbenzoyl)-3-(3-ferrocenylphenyl)selenourea (M2F). This precursor has been used for the fabrication of FeSe thin films by aerosol-assisted chemical vapour deposition (AACVD) in the presence of different concentrations of two different surfactants (triton and span) keeping all other conditions the same. Fabricated thin films have been characterised with powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The interaction of the surfactants with the precursor (M2F) has been evaluated with cyclic voltammetry and UV–vis spectroscopy.
References
[1] H. M. Manasevit, J. Cryst. Growth 1981, 55, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlslyktLs%3D&md5=f6e490a9f46ae5adca2161004b4e2429CAS |
[2] A. C. Jones, P. O’Brien, CVD of Compound Semiconductors [Online] 2008 (Wiley: New York, NY). http://onlinelibrary.wiley.com/doi/10.1002/9783527614639.fmatter/pdf (accessed 26 June 2014).
[3] S. Ashraf, A. Saeed, M. A. Malik, U. Flörke, M. Bolte, N. Haider, J. Akhtar, Eur. J. Inorg. Chem. 2014, 2014, 533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKgs7nJ&md5=bc9896c2a97efd5a736af9d7bb717f13CAS |
[4] J. Akhtar, M. Akhtar, M. A. Malik, P. O’Brien, J. Raftery, J. Am. Chem. Soc. 2012, 134, 2485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVyjuw%3D%3D&md5=a35871e0fc3d00f70698f25cb9388e33CAS | 22280503PubMed |
[5] D. Berlincourt, H. Jaffe, L. Shiozawa, Phys. Rev. 1963, 129, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjtVCkug%3D%3D&md5=eb6b17ba1a72b25d79f2a90317dffc51CAS |
[6] S. J. Moniz, C. S. Blackman, C. J. Carmalt, G. Hyett, J. Mater. Chem. 2010, 20, 7881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVylsLfJ&md5=b8f976e6a824fa32a42b6ea4c5c58555CAS |
[7] C. S. Blackman, C. J. Carmalt, I. P. Parkin, L. Apostolico, K. C. Molloy, A. J. White, D. J. Williams, Dalton Trans. 2002, 2702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCmuro%3D&md5=38c1636f18f89622dbd10a85974f17c2CAS |
[8] T. Thomas, C. S. Blackman, I. P. Parkin, C. J. Carmalt, Eur. J. Inorg. Chem. 2010, 2010, 5629.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. L. Choy, Prog. Mater. Sci. 2003, 48, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslChsL4%3D&md5=ddd4f1ea446493f79217660fa163159cCAS |
[10] P. Marchand, I. A. Hassan, I. P. Parkin, C. J. Carmalt, Dalton Trans. 2013, 42, 9406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCit7c%3D&md5=a4dafff02c7cb7d27951b7fefaa3af9eCAS | 23629474PubMed |
[11] L. Li, Z. R. Yang, Y. P. Sun, J. Y. Zhang, D. Z. Shen, Y. H. Zhang, Supercond. Sci. Technol. 2011, 24, 015010.
| Crossref | GoogleScholarGoogle Scholar |
[12] A. K. Dutta, S. K. Maji, D. N. Srivastava, A. Mondal, P. Biswas, P. Paul, B. Adhikary, ACS Appl. Mater. Interfaces 2012, 4, 1919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFWgsLc%3D&md5=2866a8513c66e546aae70653c1b5bccaCAS | 22448782PubMed |
[13] S. Demura, H. Okazaki, T. Ozaki, H. Hara, Y. Kawasaki, K. Deguchi, T. Watanabe, S. J. Denholme, Y. Mizuguchi, T. Yamaguchi, H. Takeya, Y. Takano, Solid State Commun. 2013, 154, 40.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlKltg%3D%3D&md5=e5c14bc4ece0c9e65fba2e08121ce97dCAS |
[14] T.-K. Chen, J.-Y. Luo, C.-T. Ke, H.-H. Chang, T.-W. Huang, K.-W. Yeh, C.-C. Chang, P.-C. Hsu, C.-T. Wu, M.-J. Wang, M.-K. Wu, Thin Solid Films 2010, 519, 1540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantrjK&md5=dc979686e35cb52d4e1345f0427822e0CAS |
[15] Y. Hara, K. Takase, A. Yamasaki, H. Sato, N. Miyakawa, N. Umeyama, S. I. Ikeda, Physica C 2010, 470, S313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2ms7s%3D&md5=083970e96da4c7d8c718787c23108c2aCAS |
[16] A. Ubale, Y. Sakhare, S. Bombatkar, Mater. Res. Bull. 2013, 48, 3564.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVKisLw%3D&md5=d08c1cbe8c79842c137422a1893a3ce6CAS |
[17] X. J. Wu, Z. Z. Zhang, J. Y. Zhang, Z. G. Ju, B. H. Li, B. S. Li, C. X. Shan, D. X. Zhao, B. Yao, D. Z. Shen, Thin Solid Films 2008, 516, 6116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVCmu7c%3D&md5=3078a974577bbbb30482d23ad86a52aaCAS |
[18] A. Ubale, Y. Sakhare, J. Phys. Chem. Solids 2013, 74, 1459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpt12jtrY%3D&md5=cbf56177ae3d9e18976d4808ec6d0407CAS |
[19] S. Agatsuma, T. Yamagishi, S. Takeda, M. Naito, Physica C 2010, 470, 1468.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ons7nJ&md5=9e47c8ebc6e680bf671f04f07362303bCAS |
[20] Z. Li, J. Ju, J. Tang, K. Sato, M. Watahiki, K. Tanigaki, J. Phys. Chem. Solids 2010, 71, 495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvV2qs7w%3D&md5=1bb7bb17559699d33a5de747200116dcCAS |
[21] N. Umeyama, M. Tomura, K. Takase, S. Hara, S. Horiguchi, A. Tominaga, H. Sato, Y. Hara, N. Miyakawa, S. I. Ikeda, Physica C 2010, 470, S518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2lsrg%3D&md5=fdfc7f3fce9380b4f24e06ffff811745CAS |
[22] X. Qi, J.-Y. Wang, J.-C. Kuo, K. A. Yates, L. F. Cohen, J. Alloy. Compd. 2011, 509, 6350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVWqsLc%3D&md5=fa8c1d433ebfd22b0468b23e480530eeCAS |
[23] C.-C. Chang, C.-H. Wang, M.-H. Wen, Y.-R. Wu, Y.-T. Hsieh, M.-K. Wu, Solid State Commun. 2012, 152, 649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFyhtLw%3D&md5=568c10bdfef76c794b4e10c04372d85bCAS |
[24] R. Yoshida, T. Wakita, H. Okazaki, Y. Mizuguchi, S. Tsuda, Y. Takano, H. Takeya, K. Hirata, Y. Kato, T. Muro, M. Okawa, K. Ishizaka, S. Shin, H. Harima, M. Hirai, Y. Muraoka, T. Yokoya, Physica C 2010, 470, S389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2mtrc%3D&md5=411b1c6087838cab3114ca0276d53100CAS |
[25] X. Guo, P. Yi, Y. Yang, J. Cui, S. Xiao, W. Wang, Electrochim. Acta 2013, 90, 524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Khsr0%3D&md5=61cf57f1634e3587d4da820af11f496eCAS |
[26] C. S. McNally, D. P. Turner, A. N. Kulak, F. C. Meldrum, G. Hyett, Chem. Commun. 2012, 48, 1490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtF2rtA%3D%3D&md5=05ad21fa106c1e775184baf5f451e8c6CAS |
[27] T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=5d700bcffa3d3c4d2d31273ee0f0c918CAS | 12409628PubMed |
[28] G. M. Sheldrick, Acta Crystallogr. A 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[29] S.-M. Zhou, S.-Y. Lou, Y.-Q. Wang, X.-L. Chen, Mater. Lett. 2011, 65, 1741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVOjtbc%3D&md5=e2e18fdc56e36c8d9a08988a3fc296f5CAS |
[30] R. A. Hussain, A. Badshah, M. N. Tahir, B. Lal, I. A. Khan, Aust. J. Chem. 2013, 66, 626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1ygtrk%3D&md5=1a2c5ab5831b5f50e2c0003b6d334f44CAS |
[31] R. A. Hussain, A. Badshash, M. Sohail, B. Lal, A. A. Altaf, Inorg. Chim. Acta 2013, 402, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFylt74%3D&md5=409b071d99c54ffedb2d8e78e0ac5717CAS |
[32] R. A. Hussain, A. Badshah, M. Sohail, B. Lal, K. Akbar, J. Mol. Struct. 2013, 1048, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SktbbM&md5=f81c83c4ba6ec15cdffde67a6f9d1368CAS |
[33] R. A. Hussain, A. Badshah, M. N. Tahir, T. U. Hassan, A. Bano, J. Biochem. Mol. Toxicol. 2013, 28, 60.
| Crossref | GoogleScholarGoogle Scholar | 24243646PubMed |