Colorimetric Assay for Al3+ Based on Alizarin Red S-functionalized Silver Nanoparticles
Xin Liu A , Fang-Ying Wu A B and Li-Hua Ma AA Department of Chemistry, Nanchang University, Nanchang 330031, China.
B Corresponding author. Email: fywu@ncu.edu.cn
Australian Journal of Chemistry 67(11) 1700-1705 https://doi.org/10.1071/CH14039
Submitted: 27 January 2014 Accepted: 17 March 2014 Published: 8 May 2014
Abstract
Aluminium is absorbed by the intestines and is rapidly transported into bone, where it disrupts mineralization and bone cell growth and activity. Because aluminium is sequestered in bone for long periods, its toxic effects are cumulative. Even intermittent or low-dose use of aluminium-based materials (food, juice, drinking water containers) adds to the total load in bone. Development of fast and inexpensive sensors for aluminium, therefore, is still of great interest. We report here a simple, low-cost yet very sensitive and selective colorimetric assay for rapid (2-min) detection of Al3+ in water with a 0.12-μM detection limit based on Alizarin Red S-functionalized silver nanoparticles.
References
[1] R. W. Gensemer, R. C. Playle, Crit. Rev. Environ. Sci. Technol. 1999, 29, 315.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVKju7g%3D&md5=4874074380b317bd973e7442fd541832CAS |
[2] O. I. Egbuna, A. Bose, Internet J. Nephrol. 2005, 2, 1.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. L. Hegde, P. Shanmugavelu, B. Vengamma, T. S. S. Rao, R. B. Menon, R. V. Rao, K. S. J. Rao, J. Trace Elem. Med. Biol. 2004, 18, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFWku78%3D&md5=0f0ce4b387304114ff42109eb93fd74bCAS | 15646263PubMed |
[4] S. S. Krishnan, K. A. Gillespie, D. R. Crapper, Anal. Chem. 1972, 44, 1469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksFyntrw%3D&md5=5e4835b8d816e818ced110725c5ba899CAS | 5083851PubMed |
[5] F. W. Reuter, W. L. Raynolds, Adv. Exp. Med. Biol. 1974, 48, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXht1Wjtrs%3D&md5=5f1109e8c6141846467cd35e1bbaab7cCAS | 4611164PubMed |
[6] A. H. Chafi, J. J. Hauw, G. Rancurel, J. P. Berry, C. Galle, Neurosci. Lett. 1991, 123, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVGnsr8%3D&md5=d1c4cddee354022f7178aac837abcf2bCAS | 1829512PubMed |
[7] X. Xu, J. Wang, F. Yang, K. Jiao, X. Yang, Small 2009, 5, 2669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektb3E&md5=9a824d0f1fa49db22743faba1a0565b6CAS | 19813222PubMed |
[8] W. Y. Wu, Z. P. Bian, W. Wang, W. Wang, J. J. Zhu, Sens. Actuators B Chem. 2010, 147, 298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslCgs7Y%3D&md5=d79f4bca3a3c7305fa2e6fe827efd322CAS |
[9] A. Ravindran, V. Mani, N. Chandrasekaran, A. Mukherjee, Talanta 2011, 85, 533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFGqt7o%3D&md5=d88f16b54108a67c9b50090c38d822ddCAS | 21645737PubMed |
[10] M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal, A. M. Asiri, Chem. Engineer J 2012, 192, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Cmsrs%3D&md5=f0c19453123e85d9fe02e8ff7c7d8998CAS |
[11] J.-S. Lee, A. K. R. Lytton-Jean, S. J. Hurst, C. A. Mirkin, Nano Lett. 2007, 7, 2112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2ltbc%3D&md5=ad02a7918d126e43f63449e9876002efCAS | 17571909PubMed |
[12] S. Link, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 3529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlKrtb8%3D&md5=b7bf519ca1a83b059178412303a87f6bCAS |
[13] W. Leesutthiphonchai, W. Dungchai, W. Siangproh, N. Ngamrojnavanich, O. Chailapakul, Talanta 2011, 85, 870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFSku7c%3D&md5=db6fbb9b9b5088d3ca628f7bff96ea9fCAS | 21726712PubMed |
[14] H. B. Li, Z. M. Cui, C. P. Han, Sens. Actuators B Chem. 2009, 143, 87.
| Crossref | GoogleScholarGoogle Scholar |
[15] Y. Yao, D. M. Tian, H. B. Li, Appl. Mater. Inter. 2010, 2, 684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSjtrg%3D&md5=2b96d720c64d4cd90cf3ff6f7af881b1CAS |
[16] Y. Dou, X. Yang, Z. Liu, S. Zhu, Colloids Surf. A Physicochem. Eng. Asp. 2013, 423, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFWmsbY%3D&md5=7b8f0c33ab7dc7cb686e67924e24789eCAS |
[17] Y. Shang, D. Gao, F. Y. Wu, X. F. Wan, Microchim. Acta 2013, 180, 1317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ShsrnK&md5=7a2834ce41c8cb19709f9f3f85283d43CAS |
[18] V. Ya. Fain, B. E. Zaitsev, M. A. Ryabov, Russ. J. Coord. Chem. 2004, 30, 390.
[19] S. M. Supian, T. L. Ting, L. Y. Heng, K. F. Chong, Anal.Methods 2013, 5, 2602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFygsLs%3D&md5=7006d38ca959cb3bd9084cd4b928a94cCAS |
[20] Guidelines for Drinking Water Quality, 3rd edn 2004, p. 301 (World Health Organization: Geneva).
[21] S. M. Ng, R. Narayanaswamy, Anal. Bioanal. Chem. 2006, 386, 1235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFegtL3F&md5=ce092d62c24c0ae0e4632cb6d81d52b4CAS | 16947006PubMed |
[22] Y. Y. Chen, H. T. Chang, Y. C. Shiang, Y. L. Hung, C. K. Chiang, C. C. Huang, Anal. Chem. 2009, 81, 9433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSiu73F&md5=bd73b301639e260ef6895254035e0ca8CAS | 19852441PubMed |
[23] K. W. Huang, C. J. Yu, W. L. Tseng, Biosens. Bioelectron. 2010, 25, 984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyktL7J&md5=0c9fb23f52221fe464c5c876b956cae1CAS | 19782557PubMed |
[24] M. Zhang, B. C. Ye, Anal. Chem. 2011, 83, 1504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ahsbg%3D&md5=d473f09e8fd35b32fdad0b2fd2b7f52dCAS | 21302899PubMed |