Thermal Decomposition of Diethylketone Cyclic Triperoxide in Polar Solvents
Gastón P. Barreto A C , Elida E. Alvarez A , Gladys N. Eyler A , Adriana I. Cañizo A and Patricia E. Allegretti BA Laboratorio de Química, Dpto. Ingeniería Química, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Avda. del Valle 5737, (B7400JWI) Olavarría, Buenos Aires, Argentina.
B Laboratorio de Estudio de Compuestos Orgánicos (LADECOR), División Química Orgánica, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata, Buenos Aires, Argentina.
C Corresponding author. Email: gbarreto@fio.unicen.edu.ar
Australian Journal of Chemistry 67(6) 881-886 https://doi.org/10.1071/CH13660
Submitted: 5 December 2013 Accepted: 24 January 2014 Published: 28 February 2014
Abstract
The thermolysis of diethylketone cyclic triperoxide (3,3,6,6,9,9-hexaethyl-1,2,4,5,7,8-hexaoxacyclononane, DEKTP) was studied in different polar solvents (ethanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, and acetonitrile). The rate constant values (kd) are higher for reactions performed in secondary alcohols probably because of the possibility to form a cyclic adduct with the participation of the hydrogen atom bonded to the secondary carbon. The kinetic parameters were correlated with the physicochemical properties of the selected solvents. The products of the DEKTP thermal decomposition in different polar solvents support a radical-based decomposition mechanism.
References
[1] S.-H. Wu, J.-H. Chi, Y.-T. Wu, Y.-H. Huang, F.-J. Chu, J.-J. Horng, C.-M. Shu, J.-C. Charpentier, J. Loss Prevent Proc. 2012, 25, 1069.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGiurnJ&md5=cfba2aa1c1772e12a04f374ab908e383CAS |
[2] V. Y. Egorshev, V. P. Sinditskii, S. P. Smirnov, Thermochim. Acta 2013, 574, 154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSmu7rJ&md5=6df948b36ea06a206ed6f85c8f367241CAS |
[3] A. I. Cañizo, Trends Org. Chem. 2006, 11, 55.
[4] R. D. Bach, P. Y. Ayala, H. B. Schlegel, J. Am. Chem. Soc. 1996, 118, 12758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFSht7s%3D&md5=1db948f13ca744839978d5b1028be325CAS |
[5] T. Wilson, M. E. Landis, A. L. Baumstark, P. D. Bartlett, J. Am. Chem. Soc. 1973, 95, 4765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXks1Gmsbo%3D&md5=3da17e0580742898d6a4f45e16ccb4afCAS |
[6] A. I. Cañizo, G. N. Eyler, C. M. Mateo, E. E. Alvarez, R. K. Nesprias, Heterocycles 2004, 63, 2231.
| Crossref | GoogleScholarGoogle Scholar |
[7] G. Barreto, G. Eyler, Polym. Bull. 2011, 67, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1yqtbk%3D&md5=f6a2c58d02cdc68b3edbba0b24a81738CAS |
[8] J. R. Cerna, G. Morales, G. N. Eyler, A. I. Cañizo, J. Appl. Polym. Sci. 2002, 83, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVKns7w%3D&md5=cb1e4b6ada1c9ded9c10534cdc78144dCAS |
[9] A. I. Cañizo, G. N. Eyler, G. Morales, J. R. Cerna, J. Phys. Org. Chem. 2004, 17, 215.
| Crossref | GoogleScholarGoogle Scholar |
[10] G. N. Eyler, A. I. Cañizo, E. E. Alvarez, L. F. R. Cafferata, Tetrahedron Lett. 1993, 34, 1745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksV2gtb4%3D&md5=c455749d31079ba3d72e275b97ac2843CAS |
[11] J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents: Physical Properties and Methods of Purification 1986 (Wiley Interscience: New York, NY).
[12] D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals 1988 (Pergamon Press: Oxford).
[13] G. N. Eyler, A. I. Cañizo, E. E. Alvarez, L. F. R. Cafferata, An. Asoc. Quím. Argent. 1994, 82.
[14] L. F. R. Cafferata, G. N. Eyler, M. V. Mirifico, J. Org. Chem. 1984, 49, 2107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVKnsb8%3D&md5=4f2d59ac3da73c7fa37cebecb6e0113aCAS |
[15] L. F. R. Cafferata, G. N. Eyler, E. L. Svartman, A. I. Canizo, E. J. Borkowski, J. Org. Chem. 1990, 55, 1058.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXns1WqsQ%3D%3D&md5=b7f9d1432f36a3aa3dcd941288157c16CAS |
[16] L. F. R. Cafferata, G. N. Eyler, E. L. Svartman, A. I. Canizo, E. Alvarez, J. Org. Chem. 1991, 56, 411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFylsQ%3D%3D&md5=d4647c6aace9652542dd4474399589d0CAS |
[17] W.-C. Sheng, J.-Y. Wu, G.-R. Shan, Z.-M. Huang, Z.-X. Weng, J. Appl. Polym. Sci. 2004, 94, 1035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot12lsr0%3D&md5=a20a0e7c07a5607a94ef70b9a36ecd24CAS |
[18] G. N. Eyler, C. M. Mateo, E. E. Alvarez, A. I. Cañizo, J. Org. Chem. 2000, 65, 2319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFKnurY%3D&md5=74a4683da5d9062bc4ef029088218012CAS | 10789441PubMed |
[19] M. Iglesias, N. Eyler, A. Cañizo, J. Phys. Org. Chem. 2009, 22, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ojtb4%3D&md5=7cc190d4f3e76e31db3e16d4ce367f3bCAS |
[20] G. Barreto, A. I. Cañizo, Afinidad 2004, 61, 4.
[21] G. N. Eyler, E. E. Alvarez, C. Minellono, A. I. Cañizo, Afinidad 2010, 67, 362.
| 1:CAS:528:DC%2BC3MXns1WkurY%3D&md5=581b236288aea97445c94ae6da4846fdCAS |
[22] P. D. Bartlett, K. Nozaki, J. Am. Chem. Soc. 1947, 69, 2299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1cXot1ek&md5=83a1038dd4a45bb70d39e373811e11f8CAS |
[23] M. S. Kharasch, J. L. Rowe, W. H. Urry, J. Org. Chem. 1951, 16, 905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XosFWh&md5=563bc568fcd05b45d0199e34f75b6abfCAS |
[24] J. E. Leffler, J. Org. Chem. 1955, 20, 1202.
| 1:CAS:528:DyaG2sXosVSj&md5=870d7f73d406e3144c39b051c583864fCAS |
[25] C. Reichardt, Angew. Chem. Int. Ed. 1965, 4, 29.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Catalan, J. Org. Chem. 1995, 60, 8315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVOmurg%3D&md5=2f0a9e831186dac1e1da020f31a0b36aCAS |
[27] J. Catalán, C. Díaz, Liebigs Ann. 1997, 1997, 1941.
| Crossref | GoogleScholarGoogle Scholar |