Syntheses, Structures, Characterisation, and Spectroscopic Properties of CuI and AgI Complexes with Extended C–H···π and π···π Interactions
Ting-Hong Huang A and Min-Hua Zhang A BA Key Laboratory for Green Chemical Technology (Ministry of Education of China), R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.
B Corresponding author. Email: mhzhang@tju.edu.cn
Australian Journal of Chemistry 67(6) 887-894 https://doi.org/10.1071/CH13566
Submitted: 21 October 2013 Accepted: 29 January 2014 Published: 28 February 2014
Abstract
Based on the ligands N,N′-bis(pyridin-2-ylmethylene)benzene-1,4-diamine (pmb) and N,N′-bis(pyridin-2-ylmethylene)biphenyl-4,4′-diamine (pmbb), the three compounds [Cu2(pmb) (PPh3)2(Cl)2] (1), [Cu2(pmbb)(CH3CN)2(PPh3)2](BF4)2·2DMF (2), and [Ag2(pmbb)(PPh3)2] (ClO4)2 (3) have been synthesised and characterised. Structural analysis reveals that all of these complexes contain 1D supramolecular arrays, with different variations in π-stacking patterns and intermolecular C–H···π interactions. Crystal structures of 1 and 2 contain 1D tape-like arrays formed by C–H···π and π···π interactions, and an ordered-layer-lattice of DMF and BF4– in 2 is located between the one-dimensional array. For 3, π-stacking interactions lead to the construction of 1D supramolecular arrays and a 2D network. The results indicate that C–H···π and π···π interactions play an important role in the construction of the supramolecular structure. In addition, the absorption peaks of complexes 1 and 3 in the solid state at room temperature show intraligand charge transfer and metal-to-ligand charge transfer absorptions. The optical and fluorescent properties of 2 were also studied in acetonitrile solution at room temperature.
References
[1] E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems, Nature 2009, 459, 73.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsF2ltrs%3D&md5=062457faeff18c679b41bf3358ef192aCAS | 19424153PubMed |
[2] S. N. Georgiades, N. H. Abd Karim, K. Suntharalingam, R. Vilar, Angew. Chem. Int. Ed. 2010, 49, 4020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSltb0%3D&md5=27d84d0b83f835cda91acb7e1cf2d2e8CAS |
[3] Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, C. Mao, Nature 2008, 452, 198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmsr4%3D&md5=531712c3be9d76003dccf43bafab2567CAS | 18337818PubMed |
[4] C. V. Kumar, M. R. Duff, J. Am. Chem. Soc. 2009, 131, 16024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12hsrnP&md5=b70bfa3e3c4e2288c509c357cbf4d8e8CAS | 19845378PubMed |
[5] P. P. Neelakandan, Z. Pan, M. Hariharan, Y. Zheng, H. Weissman, B. Rybtchinski, F. D. Lewis, J. Am. Chem. Soc. 2010, 132, 15808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSntbvM&md5=d4eeb40a8f6f37993bee8be227e54007CAS | 20954733PubMed |
[6] X. Xu, H. Yuan, J. Chang, B. He, Z. Gu, Angew. Chem. Int. Ed. 2012, 51, 3130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOqtLg%3D&md5=b68233d7858202e13fd7e45af9dfd2fdCAS |
[7] R. Iwaura, F. J. M. Hoeben, M. Masuda, A. P. H. J. Schenning, E. W. Meijer, T. Shimizu, J. Am. Chem. Soc. 2006, 128, 13298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1aksLY%3D&md5=a899857b6ca1f5dbc8794aea45ef80fdCAS | 17017812PubMed |
[8] P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature 2012, 481, 492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKjtbs%3D&md5=21ab8cd4d63b7f32dbd1c2696777016cCAS | 22258506PubMed |
[9] G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem. Int. Ed. 2007, 46, 2366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVaguro%3D&md5=3c67d1e9f33179d252d3f75ece97e214CAS |
[10] V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H. W. Spiess, S. D. Hudson, H. Duan, Nature 2002, 417, 384.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. Peterca, V. Percec, M. R. Imam, P. Leowanawat, K. Morimitsu, P. A. Heiney, J. Am. Chem. Soc. 2008, 130, 14840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ahs7fO&md5=9d8303e921f02660082a3655039ac41eCAS | 18841962PubMed |
[12] T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S. Mashiko, Nature 2001, 413, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrmvFeisw%3D%3D&md5=dc8b77282797a1f50c41450cf24ee3a4CAS | 11675782PubMed |
[13] W. S. Childers, A. K. Mehta, R. Ni, J. V. Taylor, D. G. Lynn, Angew. Chem. Int. Ed. 2010, 49, 4104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSltbw%3D&md5=8a86815786f79d85aa1b220a2e4740feCAS |
[14] Z. Shi, J. Liu, T. Lin, F. Xia, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2011, 133, 6150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1yltrg%3D&md5=6e304ad331fb23111c7b529e1b2ffa9eCAS | 21466153PubMed |
[15] A. J. Wilson, Angew. Chem. Int. Ed. 2010, 49, 4011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSlu7Y%3D&md5=7a6bf33890b3ae2b0542259d36c48240CAS |
[16] L.-C. Gui, X.-J. Wang, Q.-L. Ni, M. Wang, F.-P. Liang, H.-H. Zou, J. Am. Chem. Soc. 2012, 134, 852.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hsLbI&md5=df7f6c111130cabd30c36bacdf2a01e6CAS | 22201454PubMed |
[17] E. M. Lambert, C. Viravaidya, M. Li, S. Mann, Angew. Chem. Int. Ed. 2010, 49, 4100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSlu74%3D&md5=3a14391f335caf77bceacbe55591e62eCAS |
[18] H. Mansikkamäki, M. Nissinen, K. Rissanen, Angew. Chem. Int. Ed. 2004, 43, 1243.
| Crossref | GoogleScholarGoogle Scholar |
[19] H. Uno, A. Masumoto, N. Ono, J. Am. Chem. Soc. 2003, 125, 12082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Cjt7s%3D&md5=3159aa9896ae0c4fcce6b37e839e97bfCAS | 14518980PubMed |
[20] J. D. Wood, J. L. Jellison, A. D. Finke, L. Wang, K. N. Plunkett, J. Am. Chem. Soc. 2012, 134, 15783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12isb7L&md5=1bfe0fcf0a2e926ccec9de1a6ec8caacCAS | 22938098PubMed |
[21] C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKmtb0%3D&md5=4e117ef7be9a41c7ae40ad30cca39361CAS |
[22] J. Ahn, S. Park, J. H. Lee, S. H. Jung, S.-J. Moon, J. H. Jung, Chem. Commun. 2013, 49, 2109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOisrY%3D&md5=60402cdbd2fd9025ff21eb006e9c5134CAS |
[23] A. R. Choudhury, K. Islam, M. T. Kirchner, G. Mehta, T. N. Guru Row, J. Am. Chem. Soc. 2004, 126, 12274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOqs7k%3D&md5=732000e087ced03435e939f48b538ed3CAS | 15453754PubMed |
[24] C. D. Tatko, M. L. Waters, J. Am. Chem. Soc. 2004, 126, 2028.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFWiug%3D%3D&md5=3df11250e42ced4d3392ec06d96521ceCAS | 14971936PubMed |
[25] S. Tsuzuki, A. Fujii, Phys. Chem. Chem. Phys. 2008, 10, 2584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVOntLk%3D&md5=4d529edb1903f2bc82dd00ca035ac707CAS | 18464973PubMed |
[26] J. Zhang, J. Chen, B. Xu, L. Wang, S. Ma, Y. Dong, B. Li, L. Ye, W. Tian, Chem. Commun. 2013, 49, 3878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslagsb0%3D&md5=b48e7942577140f73101caa98f0ad7b3CAS |
[27] E. Hartmann, R. M. Gschwind, Angew. Chem. Int. Ed. 2013, 52, 2350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFamtQ%3D%3D&md5=7252065de9fdb3b809cbeb60c6dd44bbCAS |
[28] S. Turega, M. Whitehead, B. R. Hall, A. J. H. M. Meijer, C. A. Hunter, M. D. Ward, Inorg. Chem. 2013, 52, 1122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1artg%3D%3D&md5=2b5eed4f2d4fd1bc784eec7dea25abbbCAS | 23301770PubMed |
[29] M. Hutin, C. J. Cramer, L. Gagliardi, A. R. M. Shahi, G. Bernardinelli, R. Cerny, J. R. Nitschke, J. Am. Chem. Soc. 2007, 129, 8774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVGlsLw%3D&md5=11a0c8828c2efb6bb1319195566194b8CAS | 17592841PubMed |
[30] W. Meng, J. K. Clegg, J. R. Nitschke, Angew. Chem. Int. Ed. 2012, 51, 1881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVWgug%3D%3D&md5=f694ad93dca9d444656a29b10db966f4CAS |
[31] J. R. Nitschke, M. Hutin, G. Bernardinelli, Angew. Chem. Int. Ed. 2004, 43, 6724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslKk&md5=eeba7219f489683602b5d763e2605291CAS |
[32] J. R. Nitschke, D. Schultz, G. Bernardinelli, D. Gérard, J. Am. Chem. Soc. 2004, 126, 16538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSmtL3F&md5=cf3627707918ff7623fda96f8bcc9bf1CAS | 15600358PubMed |
[33] A. Wada, Q. Zhang, T. Yasuda, I. Takasu, S. Enomoto, C. Adachi, Chem. Commun. 2012, 48, 5340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlOqs7Y%3D&md5=6ae0b9faf9c05240255c5592c4512584CAS |
[34] J. C. Barnes, M. Juríček, N. L. Strutt, M. Frasconi, S. Sampath, M. A. Giesener, P. L. McGrier, C. J. Bruns, C. L. Stern, A. A. Sarjeant, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yhsLfL&md5=35eaa7beed4d700f4365785ece9ada1cCAS | 22928610PubMed |
[35] B. Song, Z. Wang, S. Chen, X. Zhang, Y. Fu, M. Smet, W. Dehaen, Angew. Chem. Int. Ed. 2005, 44, 4731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVSqsLw%3D&md5=b3683b833eb5bf6e94e6aab53f5bb176CAS |
[36] L. J. Childs, N. W. Alcock, M. J. Hannon, Angew. Chem. Int. Ed. 2001, 113, 1113.
| Crossref | GoogleScholarGoogle Scholar |
[37] B. Nohra, S. Graule, C. Lescop, R. Réau, J. Am. Chem. Soc. 2006, 128, 3520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslekur0%3D&md5=a916f667d3f09c61c34c2f618d525690CAS | 16536516PubMed |
[38] N. Chanda, B. Mondal, V. G. Puranik, G. K. Lahiri, Polyhedron 2002, 21, 2033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFGnt7o%3D&md5=a076de5a0b5965dac7118b5288dea876CAS |
[39] J. Fan, J. W. Bats, M. Schmittel, Inorg. Chem. 2009, 48, 6338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Wrsr4%3D&md5=7f5c8447d42f265a0502a8e0437e6d75CAS | 19527007PubMed |
[40] S. Zarra, M. M. J. Smulders, Q. Lefebvre, J. K. Clegg, J. R. Nitschke, Angew. Chem. Int. Ed. 2012, 51, 6882.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12hurg%3D&md5=c2e1d9e0d42059fe87d5875f4f8169ffCAS |
[41] G. M. Sheldrick, SHELXL 97: Program for the Solution of Crystal Structure 1997 (University of Gottingen: Gottingen).
[42] S. Michalik, J. Coord. Chem. 2012, 65, 1189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktlCjtrk%3D&md5=920028d9d0fe05829331032548916fdfCAS |
[43] D. Tzimopoulos, A. Czapik, S. Kotoulas, J. Mohanraj, M. Gdaniec, P. D. Akrivos, J. Coord. Chem. 2012, 65, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Knu7w%3D&md5=778daa961e43936a1e9492371d7081deCAS |
[44] M. Barboiu, E. Petit, A. van der Lee, G. Vaughan, Inorg. Chem. 2006, 45, 484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlajtrzE&md5=bba48dbc1bb49e43c38f7401e8e30aeeCAS | 16411676PubMed |
[45] P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem. Int. Ed. 2008, 47, 8297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12htbvF&md5=ed543e2cb29b3925fa50d3ca6bdf013dCAS |
[46] H.-C. Wu, P. Thanasekaran, C.-H. Tsai, J.-Y. Wu, S.-M. Huang, Y.-S. Wen, K.-L. Lu, Inorg. Chem. 2006, 45, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ygu7vJ&md5=df42478cafec97b3f737e508fbae88a2CAS | 16390068PubMed |
[47] G. Attilio Ardizzoia, S. Brenna, F. Castelli, S. Galli, Inorg. Chim. Acta 2009, 362, 3507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1eju78%3D&md5=db32b1a0d4337f57519ee2c92c79f9acCAS |
[48] M. Winter, WebElements Periodic Table (Professional Edition). Available at http://www.webelements.com
[49] X.-L. Li, Y.-B. Ai, B. Yang, J. Chen, M. Tan, X.-L. Xin, Y.-H. Shi, Polyhedron 2012, 35, 47.
| Crossref | GoogleScholarGoogle Scholar |
[50] J. Min, Q. Zhang, W. Sun, Y. Cheng, L. Wang, Dalton Trans. 2011, 40, 686.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wjtb3F&md5=597c8648bc687d859e36070ab1d7d020CAS | 21127783PubMed |
[51] S. Roy, T. K. Mondal, P. Mitra, E. L. Torres, C. Sinha, Polyhedron 2011, 30, 913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVGitLg%3D&md5=632454343609b70be9176013307f6d41CAS |
[52] K. Onodera, N. C. Kasuga, T. Takashima, A. Hara, A. Amano, H. Murakami, K. Nomiya, Dalton Trans. 2007, 3646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVWitLg%3D&md5=fe54e58f06a8229bee112f7b88869592CAS | 17700827PubMed |
[53] R. Horvath, M. G. Fraser, S. A. Cameron, A. G. Blackman, P. Wagner, D. L. Officer, K. C. Gordon, Inorg. Chem. 2013, 52, 1304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVSquw%3D%3D&md5=3e745bd9cc200c65edc08510c16e7082CAS | 23311357PubMed |
[54] X. Liu, H. Nan, W. Sun, Q. Zhang, M. Zhan, L. Zou, Z. Xie, X. Li, C. Lu, Y. Cheng, Dalton Trans. 2012, 41, 10199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKnsLzM&md5=8ff459b91e49e32a3ec3265440c9172aCAS | 22772090PubMed |
[55] M. Sandroni, M. Kayanuma, M. Rebarz, H. Akdas-Kilig, Y. Pellegrin, E. Blart, H. Le Bozec, C. Daniel, F. Odobel, Dalton Trans. 2013, 42, 14628.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSms7jI&md5=28a0cc42abe3e5ea0800681be36d80c5CAS | 23986261PubMed |
[56] A. Makal, J. Benedict, E. Trzop, J. Sokolow, B. Fournier, Y. Chen, J. A. Kalinowski, T. Graber, R. Henning, P. Coppens, J. Phys. Chem. A 2012, 116, 3359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1SqsLc%3D&md5=8ddc8c5598d3e7e436d74322ab064f5dCAS | 22385365PubMed |
[57] P. A. Papanikolaou, N. V. Tkachenko, Phys. Chem. Chem. Phys. 2013, 15, 13128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWksrfN&md5=8aea4bb6d4150db663dc7b6d9bd22dadCAS | 23824232PubMed |
[58] K. Matsumoto, T. Shindo, N. Mukasa, T. Tsukuda, T. Tsubomura, Inorg. Chem. 2010, 49, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGrsw%3D%3D&md5=18f325d112538212f67d965e2227d610CAS | 20055423PubMed |
[59] I. Srnová-Šloufová, B. Vlčková, T. L. Snoeck, D. J. Stufkens, P. Matějka, Inorg. Chem. 2000, 39, 3551.
| Crossref | GoogleScholarGoogle Scholar | 11196814PubMed |
[60] C. L. Linfoot, P. Richardson, T. E. Hewat, O. Moudam, M. M. Forde, A. Collins, F. White, N. Robertson, Dalton Trans. 2010, 39, 8945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygtbfI&md5=37ea6caa6133235cfca3e5a49d5626b6CAS | 20859569PubMed |
[61] G. F. Manbeck, W. W. Brennessel, R. Eisenberg, Inorg. Chem. 2011, 50, 3431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1SjsLk%3D&md5=ebe1c0d957421a4b735497829e550f3fCAS | 21417454PubMed |
[62] J. Huang, O. Buyukcakir, M. W. Mara, A. Coskun, N. M. Dimitrijevic, G. Barin, O. Kokhan, A. B. Stickrath, R. Ruppert, D. M. Tiede, J. F. Stoddart, J.-P. Sauvage, L. X. Chen, Angew. Chem. Int. Ed. 2012, 51, 12711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GgsLzF&md5=7c7a318a2b81d36705d1b9001b2ad2b1CAS |
[63] P. Papanikolaou, J. Mohanraj, A. Czapik, M. Gdaniec, G. Accorsi, P. Akrivos, Dalton Trans. 2013, 42, 3357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlWltbw%3D&md5=96b1c7771444f43308d352467505839eCAS | 23233125PubMed |
[64] Z.-F. Yao, X. Gan, W.-F. Fu, J. Coord. Chem. 2009, 62, 1817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVGhsb8%3D&md5=6bfd4c4c0eba16eb600f1c883357c40eCAS |