Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of New-structured PbTiO3 Nanowires With Reversible Bending Properties

Jiang Wang A B D , Jian Li A B and Youwen Wang C
+ Author Affiliations
- Author Affiliations

A University of Science and Technology Liaoning, Anshan, Liaoning 114000, PR China.

B Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.

C Center of Analysis and Measurement of Zhejiang University, Hangzhou, Zhejiang, 310027 PR China.

D Corresponding author. Email: wjsisi@sohu.com

Australian Journal of Chemistry 67(5) 790-795 https://doi.org/10.1071/CH13617
Submitted: 11 November 2013  Accepted: 1 January 2014   Published: 7 April 2014

Abstract

One-dimensional PbTiO3 nanowires 40–500 nm in diameter and ~400 μm in length were synthesized via a hydrothermal strategy and characterized by X-ray diffraction, electron backscatter diffraction, scanning electron microscopy, and transmission electron microscopy. The results show that the PbTiO3 nanowires exhibit a new acicular crystal structure, which is a tetragonal superstructure composed of a large unit cell of 40 atoms (Pb : Ti : O = 1 : 1 : 3) with a = 12.35 Å, c = 3.83 Å. The PbTiO3 has a feature of unidirectional bending when observed through transmission electron microscopy several times. The bending can be controlled by the electron beam intensity in transmission electron microscopy and the bending process is reversible. Moreover, a possible mechanism for the bending behaviour was also studied, which indicates that macroscopic polarization is in the {110} plane and the direction is not consistent with the electric field, giving the possible driving force for the bending.


References

[1]  L. Li, X. M. Chen, Mater. Sci. Eng. B 2004, 108, 200.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  U. A. Joshi, J. S. Lee, Small 2005, 1, 1172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1eht7fM&md5=ccc3c686f7900a35ec2878af9ed87803CAS | 17193412PubMed |

[3]  W. S. Yun, J. J. Urban, G. Qian, H. Park, Nano Lett. 2002, 2, 447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1ansA%3D%3D&md5=8c1979439eacc2ad225017ae4c427b10CAS |

[4]  J. Kim, S. A. Yang, Y. C. Choi, J. K. Han, K. O. Jeong, Y. J. Yun, D. J. Kim, S. M. Yang, D. Yoon, H. Cheong, H. S. Chang, T. W. Noh, S. D. Bu, Nano Lett. 2008, 8, 1813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFKlsbg%3D&md5=75f45821d86a7d61f4d40dd01a0e3656CAS | 18540654PubMed |

[5]  I. I. Naumov, L. Bellaiche, H. Fu, Nature 2004, 432, 737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGmtLbP&md5=3cfe4e4fe621e44ef148f90d1fcbeefeCAS | 15592408PubMed |

[6]  H. Fu, L. Bellaiche, Phys. Rev. Lett. 2003, 91, 257601.
         | Crossref | GoogleScholarGoogle Scholar | 14754156PubMed |

[7]  B. Im, H. Jun, K. H. Lee, S. H. Lee, I. K. Yang, Y. H. Jeong, J. S. Lee, Chem. Mater. 2010, 22, 4806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlynsbk%3D&md5=b843b3bd285fef9cbb40515a3f2a6ef6CAS |

[8]  L. F. Liu, T. Y. Ning, Y. Ren, Z. H. Sun, F. F. Wang, W. Y. Zhou, S. S. Xie, L. Song, S. D. Luo, D. F. Liu, J. Shen, W. J. Ma, Y. L. Zhou, Mater. Sci. Eng. B 2008, 149, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFSisrc%3D&md5=ad26afd45ab9e88b3c830c6473975930CAS |

[9]  M. C. Hsu, I. C. Leu, Y. M. Sun, M. H. Hon, J. Solid State Chem. 2006, 179, 1421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFejsb8%3D&md5=fc30f2d632d2356f90191a90c2b7560bCAS |

[10]  R. E. Cohen, H. Karkauer, Ferroelectrics 1992, 136, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmvVeksb8%3D&md5=56a66461e03b1bd0c698fbbd42bc90a2CAS |

[11]  R. E. Cohen, Nature 1992, 358, 136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1amtL4%3D&md5=bbdde586df63bec3f02ad46fafef2bf9CAS |

[12]  E. Suaste, V. Castillo, R. González, Mater. Charact. 2004, 52, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVCktb8%3D&md5=d4c5455ee23c4fe0a0ff2e69acad2d3fCAS |

[13]  H. G. Craighead, Science 2000, 290, 1532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotl2lsrc%3D&md5=0a91ee5fc81970085d9bcf494f4cacd8CAS | 11090343PubMed |

[14]  Y. Deng, J. L. Wang, K. R. Zhu, M. S. Zhang, J. M. Hong, Q. R. Gu, Z. Yin, Mater. Lett. 2005, 59, 3272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVemsLY%3D&md5=866459383fd1879867098f1ceefef16cCAS |

[15]  Y. Luo, I. Szafraniak, N. D. Zakharov, V. Nagarajan, M. Steinhart, R. B. Wehrspohn, J. H. Wendorff, R. Ramesh, M. Alexe, Appl. Phys. Lett. 2003, 83, 440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFKisb4%3D&md5=49fb12b297d5fd26a779f3280a17349eCAS |

[16]  D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, C. Thompson, Science 2004, 304, 1650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Chu7o%3D&md5=cf5de5e0c144ac252543b99b75b7f6e8CAS | 15192223PubMed |

[17]  S. Clemens, T. Schneller, A. van der Hart, F. Peter, R. Waser, Adv. Mater. 2005, 17, 1357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsVWhsrg%3D&md5=79ae330284a60e303308f2234fa5ea3dCAS |

[18]  A. A. Zaldívar-Cadena, A. Flores-Valdés, Mater. Charact. 2007, 58, 834.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. Guo, S. Amira, P. Gougeon, X. G. Chen, Mater. Charact. 2011, 62, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSqtrzL&md5=afd1a5ee3bf985ae6b0ee9713a24592cCAS |

[20]  F. J. Humphreys, J. Mater. Sci. 2001, 36, 3833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslGku70%3D&md5=b9071f6bbba16ef055a46f4e04437948CAS |

[21]  A. Khan, D. T. Carpenter, A. M. Scotch, J. Mater. Res. 2001, 16, 694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVOis7w%3D&md5=61b8335e182c18c0cadedc7533275aedCAS |

[22]  A. D. Polli, F. F. Lange, C. G. Levi, J. Am. Ceram. Soc. 2000, 83, 873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1WkurY%3D&md5=3894017fed2fddda9811a8a630c2c7c1CAS |

[23]  G. Pilania, R. Ramprasad, J. Mater. Sci. 2012, 47, 7580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWqsbw%3D&md5=7015c8d6edbf6503e5ecbe75868a9947CAS |

[24]  G. Sághi-Szabó, R. E. Cohen, H. Krakauer, Phys. Rev. Lett. 1998, 80, 4321.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Ghosez, E. Cockayne, U. V. Waghmare, Phys. Rev. B 1999, 60, 836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlaitLs%3D&md5=4891e3c3957ce7dbb597a6521950e699CAS |

[26]  P. Marton, J. Hlinka, Phase Transit. 2013, 86, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOgt77L&md5=08c8feb5b99daa7489b672bc1b0d72d8CAS |

[27]  H. Shigematsu, H. Nakadaira, T. Futatsugi, T. Matsui, Thermochim. Acta 2000, 352–353, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  H. M. Cheng, J. M. Ma, Z. G. Zhao, D. Qiang, Y. X. Li, X. Yao, J. Am. Ceram. Soc. 1992, 75, 1123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1Sqsbg%3D&md5=162681245628d870f9ccb4f5155e044aCAS |

[29]  S. B. Cho, M. Oledzka, R. E. Riman, J. Cryst. Growth 2001, 226, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVCjs7c%3D&md5=90fd563e1d7ff145306fa5bf2dfaaf19CAS |

[30]  M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, J. M. Triscone, Phys. Rev. Lett. 2005, 95, 177601.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mnps1Gitw%3D%3D&md5=76f1396977b89a03c40b1ee71bcdfec4CAS | 16383870PubMed |

[31]  E. W. Wong, P. E. Sheeham, M. C. Liber, Science 1997, 277, 1971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt12ku7k%3D&md5=24971d7fb9924f2f7581adb6cc3fe4a3CAS |

[32]  H. Fu, R. E. Cohen, Nature 2000, 403, 281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1CisA%3D%3D&md5=4ffd6fad77943b6c37ec5390e4505c6fCAS | 10659840PubMed |

[33]  E. Cockayne, K. M. Rabe, Phys. Rev. B 1998, 57, R13973.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFKqs78%3D&md5=09554d15e68ec86e97ae8baa863b517eCAS |

[34]  P. J. Michalski, N. Sai, E. J. Mele, Phys. Rev. Lett. 2005, 95, 116803.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MrisFOmtA%3D%3D&md5=59130c2f0bff054d47f4aaea91803a75CAS | 16197029PubMed |

[35]  K. Y. Zeng, Y. S. Pang, L. Shen, K. K. Rajan, Mater. Sci. Eng. A 2008, 472, 35.
         | Crossref | GoogleScholarGoogle Scholar |