Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

[Tris(alkoxydimethylsilyl)methyl]alkylferrocenes as New Ferrocenyl Multifunctional Silyl Ethers

Kazem D. Safa A B , Hassan Abbasi A , Reza Teimuri-Mofrad A and Farzaneh A. Charandabi A
+ Author Affiliations
- Author Affiliations

A Organosilicon Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, PO Box 51666-16471 Tabriz, Iran.

B Corresponding author. Email: dsafa@tabrizu.ac.ir

Australian Journal of Chemistry 67(5) 784-789 https://doi.org/10.1071/CH13632
Submitted: 17 November 2013  Accepted: 24 December 2013   Published: 13 February 2014

Abstract

[Tris(trimethylsilyl)methyl]alkylferrocenes and [tris(dimethylsilyl)methyl]alkylferrocenes were synthesized by treatment of tris(trimethylsilyl)methyllithium and tris(dimethylsilyl)methyllithium in THF with 3-bromopropylferrocene or 4-bromobutylferrocene at 0°C. [Tris(alkoxydimethylsilyl)methyl]alkylferrocenes were obtained by dehydrocoupling with various aliphatic and benzylic alcohols in the presence of the Karstedt catalyst (platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane in xylene) in good to excellent yields. 4-[Tris(benzyloxydimethylsilyl)methyl]butylferrocene was also prepared from the transetherification of 4-[tris(methoxydimethylsilyl)methyl]butylferrocene with benzyl alcohol in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene as catalyst.


References

[1]  T. J. Kealy, P. L. Pauson, Nature 1951, 168, 1039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XltFymtA%3D%3D&md5=cfb6dee3526e3249285f8227d2b55794CAS |

[2]  B. Alonso, B. González, B. García, E. R. Rez-Oliva, M. Zamora, C. M. Casado, I. Cuadrado, J. Organomet. Chem. 2001, 637–639, 642.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. Tagni, T. Hayashi, Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science 1995 (VCH: New York).

[4]  Y. K. Kong, J. Kim, S. Choi, S. B. Choi, Tetrahedron Lett. 2007, 48, 2033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVOrt7o%3D&md5=27d9040651a89a18b605b173711f0f75CAS |

[5]  P. Shanmugam, S. Madhavan, K. Selvakumar, V. Vaithiyanathan, B. Viswambharan, Tetrahedron Lett. 2009, 50, 2213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2gt7s%3D&md5=8786e995e85d7fdf4aced6db44285b73CAS |

[6]  R. Gómez Arrayás,, J. Adrido, J. C. Carretero, Angew. Chem. Int. Ed. 2006, 45, 7674.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. J. Colacot, Chem. Rev. 2003, 103, 3101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslKiurg%3D&md5=d05b2a1081ad100b3ebff7458e8b39c2CAS | 12914493PubMed |

[8]  L. X. Dai, T. Tu, S. L. You, W. P. Deng, X. L. Hou, Acc. Chem. Res. 2003, 36, 659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVKrtbs%3D&md5=9aa99f0561228f44576f6cee7dcf8fdcCAS | 12974649PubMed |

[9]  M. L. H. Green, S. R. Marder, M. E. Thompson, J. A. Bandy, D. Bloor, P. V. Kolinsky, R. J. Jones, Nature 1987, 330, 360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlWhsL4%3D&md5=4435d9dd8e431a27fe0c72927cd434d0CAS |

[10]  P. Molina, A. Tarraga, J. L. Lopez, J. C. Martinez, J. Organomet. Chem. 1999, 584, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVChtr0%3D&md5=a32188c762887970b4a931675e5a4fdfCAS |

[11]  P. Molina, A. Pastor, M. J. Vilaplana, M. D. Velasco, M. C. Ram Arellano, Organometallics 1997, 16, 5836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1arsA%3D%3D&md5=7c1d6d7eb0dd8c1c93dbc536ba210794CAS |

[12]  C. E. Cain, T. A. J. Mashburn, C. R. Hauser, J. Org. Chem. 1961, 26, 1030.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XjvVKitw%3D%3D&md5=9a9c1b2e10ac5eed55d01eb58034a1c3CAS |

[13]  M. Zasloff, Nature 2002, 415, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVCgsLs%3D&md5=e447294a4e220678756c811401bcc241CAS | 11807545PubMed |

[14]  M. A. Schmitt, B. Weisblum, S. H. Gellman, J. Am. Chem. Soc. 2004, 126, 6848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFSgtL8%3D&md5=f22efdc2d53212d632cb1d483ff7c0f5CAS | 15174837PubMed |

[15]  S. Fernandez-Lopez, H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, M. R. Ghadiri, Nature 2001, 412, 452.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslCqu7w%3D&md5=f8afbbc340d09f91a46065c4ac94496aCAS | 11473322PubMed |

[16]  M. Itazaki, O. Kitami, M. Tanabe, Y. Nishihara, K. Osakada, J. Organomet. Chem. 2005, 690, 3957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1ajtbs%3D&md5=217c299d5314f3f64dc12119b63bc8dfCAS |

[17]  I. Manners, J. Polym. Sci. A Polym. Chem. 2002, 40, 179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjtlansw%3D%3D&md5=5501a7039a81dada25723dd0d72683ccCAS |

[18]  R. D. A. Hudson, J. Organomet. Chem. 2001, 637–639, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  I. R. Whittall, A. M. Mcdonagh, M. G. Humphrey, Adv. Organomet. Chem. 1998, 42, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12jsbs%3D&md5=aec9239ac7a910561f1822053017d54dCAS |

[20]  J. S. Miller, A. J. Epstein, W. M. Reiff, Chem. Rev. 1988, 88, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXos1CjtA%3D%3D&md5=bd50759019bd82ae77cba7cd12f491c2CAS |

[21]  E. Ramírez-Oliva, I. Cuadrado, C. M. Casado, J. Losada, B. Alonso, J. Organomet. Chem. 2006, 691, 1131.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Moran, C. M. Casado, I. Cuadrado, J. Losada, Organometallics 1993, 12, 4327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslWgtr4%3D&md5=171c6ba68e00d00bd7fc76aa192877eeCAS |

[23]  C. N. Scott, C. S. Wilcox, J. Org. Chem. 2010, 75, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2nurzJ&md5=806d68de8951334a49c9fa098c328d54CAS | 19954142PubMed |

[24]  C. Eaborn, Organosilicon Compounds 1960 (Butterworths: London).

[25]  N. Dolgov, N. P. Kharitonov, M. G. Voronkov, Zh. Obshch. Khim. 1954, 24, 1178.[in Russian]
         | 1:CAS:528:DyaG2MXmsVCiuw%3D%3D&md5=418f0d577a4fa4781f5e14ce0dc2b3ecCAS |

[26]  D. R. Gauthier, K. S. Zandi, K. J. Shea, Tetrahedron 1998, 54, 2289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1SntLc%3D&md5=cedd219091fded77a93aab3cbde70562CAS |

[27]  L. Fensterbank, M. Malacria, S. Sieburth, Synthesis 1997, 813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvF2gu7g%3D&md5=bf5acb05de7012b7bba4498e8160c719CAS |

[28]  J. F. Reichwein, S. T. Iacono, B. L. Pagenkopf, Tetrahedron 2002, 58, 3813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVektrw%3D&md5=970f1f12ae8fd382452a06fbafed0312CAS |

[29]  S. Röver, P. Wipf, Tetrahedron Lett. 1999, 40, 5667.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  P. J. Kocienski, Protecting Groups 1994 (Thieme: Stuttgart).

[31]  R. Duboc, M. Savignac, J. Genet. J. Organomet. Chem. 2002, 643–644, 512.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  C. Lorenz, U. Schubert, Chem. Ber. 1995, 128, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSlsbjM&md5=b5ff5a2502d9fffbbf3a398663a661e0CAS |

[33]  I. R. Wilding, Crit. Rev. Ther. Drug Carrier Syst. 2000, 17, 557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslChsg%3D%3D&md5=354f7ecc04ac161c3a68c8030746a0f3CAS |

[34]  H. Graindorge, J. C. Mondet, C. H. Vincent, US Patent 5 550 267 1996.

[35]  Y. Fort, P. Caubère, J. C. Gautier, J. C. Mondet, J. Organomet. Chem. 1993, 452, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls1Snurg%3D&md5=ba7da234227f313162ea637a127e1200CAS |

[36]  W. E. Willy, D. R. McKean, B. A. Garcia, Bull. Chem. Soc. Jpn. 1976, 49, 1989.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xlt1ehtrc%3D&md5=f118e3ede4bfa0f8f90b93995631161dCAS |

[37]  T. Gröbel, D. Seebach, Chem. Ber. 1977, 110, 852.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  E. Erdik, Tetrahedron 1984, 40, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkt1amu7Y%3D&md5=4e9e916f6241e5070f3d0efea17f6bf4CAS |

[39]  K. D. Safa, Y. M. Oskoei, J. Organomet. Chem. 2010, 695, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWntr%2FK&md5=e937a0b8983dddb8cf81ef01a95ff752CAS |

[40]  K. D. Safa, Y. M. Oskoei, ARKIVOC 2010, 2010, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  K. D. Safa, E. Sharifi, S. Tofangdarzadeh, A. Hassanpour, Phosphorus Sulfur Silicon 2010, 185, 2433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktbvM&md5=b71f4579c91699d41c4d205a6c64fb96CAS |

[42]  K. D. Safa, S. Tofangdarzadeh, A. Hassanpour, J. Organomet. Chem. 2009, 694, 4107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWls7rK&md5=3012bba3309f001efc18e22b9e288dfcCAS |

[43]  K. D. Safa, H. Abbasi, R. Teimuri-Mofrad, J. Organomet. Chem. 2013, 740, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCrtL7L&md5=1db03284396742f7a2e115175587d76bCAS |

[44]  M. J. Green, G. A. Kleiner, US Patent 4 617 412 1986.