Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

CuAAC and RuAAC with Alkyne-functionalised Dihydroazulene Photoswitches and Determination of Hammett σ-Constants for Triazoles

Henriette Lissau A , Søren Lindbæk Broman A , Martyn Jevric A , Anders Ø. Madsen A and Mogens Brøndsted Nielsen A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.

B Corresponding author. Email: mbn@kiku.dk

Australian Journal of Chemistry 67(3) 531-534 https://doi.org/10.1071/CH13544
Submitted: 9 October 2013  Accepted: 21 November 2013   Published: 6 January 2014

Abstract

Dihydroazulene (DHA)–vinylheptafulvene (VHF) photoswitches have attracted attention as potentially useful components in molecular electronics. The π-conjugated dihydroazulene system is a rigid structure and can be strategically functionalised to place handles for further elaboration. Here we show that alkyne-functionalised dihydroazulenes can be subjected to copper and ruthenium catalysed azide–alkyne cycloadditions (CuAAC and RuAAC) with tolylazide, furnishing 1,4- and 1,5-disubstituted triazoles. The rates of ring-closure of the corresponding vinylheptafulvenes were compared with those of reference systems, which allowed determination of Hammett substituent constants (meta and para) for N-tolyl-substituted 1,2,3-triazoles.


References

[1]  (a) M. Irie, Chem. Rev. 2000, 100, 1683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVWiu7w%3D&md5=a7ce45d29cfd35645439ac6937229285CAS | 11777415PubMed |
      (b) V. Balzani, A. Credi, S. Silvi, M. Venturi, Chem. Soc. Rev. 2006, 35, 1135.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Weibel, S. Grunder, M. Mayor, Org. Biomol. Chem. 2007, 5, 2343.
      (d) I. Yildiz, E. Deniz, F. M. Raymo, Chem. Soc. Rev. 2009, 38, 1859.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. Credi, Aust. J. Chem. 2011, 64, 127.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) I. Tochitsky, M. R. Banghart, A. Mourot, J. Z. Zhao, B. Gaub, R. Kramer, D. Trauner, Nat. Chem. 2012, 4, 105.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) W. Szymański, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) J. Daub, T. Knöchel, A. Mannschreck, Angew. Chem. Int. Ed. Engl. 1984, 23, 960.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Görner, C. Fischer, S. Gierisch, J. Daub, J. Phys. Chem. 1993, 97, 4110.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. B. Nielsen, S. L. Broman, M. Å. Petersen, A. S. Andersson, T. S. Jensen, K. Kilså, A. Kadziola, Pure Appl. Chem. 2010, 82, 843.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) S. L. Broman, M. Å. Petersen, C. G. Tortzen, A. Kadziola, K. Kilså, M. B. Nielsen, J. Am. Chem. Soc. 2010, 132, 9165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyitb0%3D&md5=3126c32278fef838a9347b5b2bbdfc4cCAS | 20552980PubMed |
      (b) M. Å. Petersen, S. L. Broman, K. Kilså, A. Kadziola, M. B. Nielsen, Eur. J. Org. Chem. 2011, 1033.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. L. Broman, M. Jevric, M. B. Nielsen, Chem. Eur. J. 2013, 19, 9542.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) S. Lara-Avila, A. V. Danilov, S. E. Kubatkin, S. L. Broman, C. R. Parker, M. B. Nielsen, J. Phys. Chem. C 2011, 115, 18372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyls73M&md5=967591a7eb3a02e5ae8dbc5d28059b52CAS |
      (b) S. L. Broman, S. Lara-Avila, C. L. Thisted, A. D. Bond, A. V. Danilov, S. E. Kubatkin, M. B. Nielsen, Adv. Funct. Mater. 2012, 22, 4249.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. Santella, V. Mazzanti, M. Jevric, C. R. Parker, S. L. Broman, A. D. Bond, M. B. Nielsen, J. Org. Chem. 2012, 77, 8922.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGkur%2FM&md5=b223dce302e0e25997f5777c93893ef8CAS | 22985481PubMed |
      (b) S. L. Broman, M. Jevric, M. B. Nielsen, J. Org. Chem. 2014, In press.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
         | Crossref | GoogleScholarGoogle Scholar | 11975567PubMed |
      (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1yhurk%3D&md5=50542383faf1dced155061438eb62932CAS | 18698735PubMed |
      (b) Special issue (Eds M. G. Finn, V. V. Fokin) Chem. Soc. Rev. 2010, 39, 1231.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, J. Am. Chem. Soc. 2005, 127, 15998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKgs7nJ&md5=647cee073332ccde1b550d7c906b0c18CAS | 16287266PubMed |
      (b) L. K. Rasmussen, B. C. Boren, V. V. Fokin, Org. Lett. 2007, 9, 5337.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang, H. Zhao, Z. Lin, G. Jia, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 8923.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXjtlSqsw%3D%3D&md5=ebd099ee2f74e6d6bb6ee9beed097b5fCAS |
      (b) H. H. Jaffé, Chem. Rev. 1953, 53, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  L. Gobbi, P. Seiler, F. Diederich, Helv. Chim. Acta 2001, 84, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslCqtr4%3D&md5=441b1196116edb16bab6bc543003454dCAS |

[11]  V. E. Matulis, Y. S. Halauko, O. A. Ivashkevich, P. N. Gaponik, J. Mol. Struct. THEOCHEM 2009, 909, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFyhs7k%3D&md5=00ce076c0dae36635ca3529641f98c91CAS |

[12]  Y. Hua, A. H. Flood, Chem. Soc. Rev. 2010, 39, 1262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ggtbw%3D&md5=b0469c9f37ea9f3f66c4a87553523d43CAS | 20349532PubMed |

[13]  X.-L. Hao, Y.-Y. Ma, C. Zhang, Q. Wang, X. Cheng, Y.-H. Wang, Y.-G. Li, E.-B. Wang, CrystEngComm 2012, 14, 6573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGgurrL&md5=8464cd0a2fb407a54c750795a0256b6bCAS |