Low-temperature Synthesis of Nanocrystalline LiNi0.5Mn1.5O4 and its Application as Cathode Material in High-power Li-ion Batteries
Shafiq Ullah A , Fiaz Ahmed B , Amin Badshah A D , Ataf Ali Altaf C , Ramsha Raza B , Bhajan Lal A and Rizwan Hussain BA Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
B National Engineering and Scientific Commission, 44000, Islamabad, Pakistan.
C Department of Chemistry, Bahauddin Zakariya University Sahiwal Campus, 57000, Sahiwal, Pakistan.
D Corresponding author. Email: aminbadshah@yahoo.com
Australian Journal of Chemistry 67(2) 289-294 https://doi.org/10.1071/CH13442
Submitted: 27 August 2013 Accepted: 7 October 2013 Published: 21 November 2013
Abstract
Nickel-doped lithium manganate spinels are a potential material for future energy storage owing to high cell potential and low price. Phase-pure spinels are difficult to prepare by conventional solid-state synthesis methods owing to loss of oxygen from the crystal lattice at high temperature (~800°C). Loss of oxygen causes Jahn–Teller distortion and Mn4+ is converted into Mn3+, which results in undesired double-plateau discharge and reduction in capacity and stability of the material. In this study, nanocrystalline phase-pure LiNi0.5Mn1.5O4 was prepared by co-precipitation with cyclohexylamine followed by calcination at a low temperature of 500°C. X-ray diffraction studies confirmed that a highly crystalline face-centred cubic product is formed with F-d3m space group. Scanning electron microscopy and transmission electron microscope studies confirmed that the particles are in the nano range with a porous structure. The as-prepared LiNi0.5Mn1.5O4 showed a high initial specific capacity (up to 130 mA h g–1) and retained up to 120 mA h g–1 up to 50 cycles. The material has high conductivity and remains stable up to a 20-C discharge rate.
References
[1] K. S. Lackner, in Issues in Environmental Science and Technology, Carbon Capture and Storage (Eds R. E. Hester and R. M. Harrison) 2010, Vol. 29, pp. 1–2 (Royal Society of Chemistry: Cambridge, UK).[2] R. York, Nature. Clim. Change 2012, 2, 441.
| Crossref | GoogleScholarGoogle Scholar |
[3] C. F. Ehrfeld, Renewable Energy Resources: a Chance to Combat Climate Change, 2009, Ch. 1, pp. 1–5 (Kluwer Law International: Frederick, MD).
[4] Q. Su, G. Zhang, J. Lai, S. Feng, W. Shi, World Electric Vehicle J. 2010, 4, 000128.
[5] N. Briguglio, L. Andaloro, M. Ferraro, V. Antonucci, in Fuel Cell Hybrid Electric Vehicles, Electric Vehicles: the Benefits and Barriers (Ed. S. Selu) 2011, Ch. 6, pp. 94–98 (InTech: Rijeca, Croatia).
[6] K. Young, C. Wang, L. Y. Wang, K. Strunz, in Electric Vehicle Integration into Modern Power Networks, Power Electronics and Power Systems (Eds R. G. Valle and J. A. P. Lopes) 2013, Ch. 2, pp. 15–57 (Springer Science + Business Media: New York, NY).
[7] M. G. Kim, J. Cho, Adv. Funct. Mater. 2009, 19, 1497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1CmtrY%3D&md5=edfd1dbd785295ed1103c9b4337d307aCAS |
[8] M. Jo, Y. K. Lee, K. M. Kim, J. Cho, J. Electrochem. Soc. 2010, 157, A841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVGqs78%3D&md5=4a2318d4a139ba329485dea378205f14CAS |
[9] J. Yang, X. Han, X. Zhang, F. Cheng, J. Chen, Nano Research 2013, 6, 679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCis7nO&md5=a24ca4b23b55a4cd9b9177748c2b1486CAS |
[10] D. Guyomard, J. M. Tarascon, Adv. Mater. 1994, 6, 408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlKju7w%3D&md5=1da4ad2da365e92dada5869a557b5da0CAS |
[11] M. Yoshio, R. J. Broad, A. Kozawa, in Lithium-ion Batteries: Science and Technology (Eds M. Yoshio, R. J. Brodd and A. Kozawa) 2009, Ch. 2, pp. 9–49 (Springer Science + Business Media: New York, NY).
[12] J. B. Goodenough, in Lithium Ion Batteries: Fundamentals and Performance (Eds M. Wakihara and O. Yamamoto) 1998, Ch. 1, pp. 1–25 (Willey-VCH Verlag GmBH: Weinheim).
[13] C. Julien, S. Ziolkiewicz, M. Lemaland, M. Massot, J. Mater. Chem. 2001, 11, 1837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslSlu7k%3D&md5=a2f2d50f6b17db90bf301e18f4cf45a8CAS |
[14] E. N. Zhecheva, M. Y. Gorovaand, R. K. Stoyanova, J. Mater. Chem. 1999, 9, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFCgtbg%3D&md5=2a3bf827ee156c233317a55e2a3e4aabCAS |
[15] S. H. Ju, D. Y. Kim, E. B. Jo, Y. C. Kang, J. Mater. Sci. 2007, 42, 5369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslygur8%3D&md5=fd52d2323f59e61e5e20b47ca0b8cc67CAS |
[16] S. T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H. T. Chung, T. H. Cho, Electrochim. Acta 2002, 47, 2543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFaqsr8%3D&md5=12f2ab50062443dd86e048586e7153afCAS |
[17] Y. S. Lee, Y.-K. Sun, S. Ota, T. Miyashita, M. Yoshio, Electrochemichem. Commun. 2002, 4, 989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xoslalu7s%3D&md5=20ce9e9f271d27551317c14bc09d87bbCAS |
[18] B. Cheng, X. Chen, X. Li, H. Xu, J. Yong, Y. Qiang, Int. J. Electrochem. Sci. 2012, 7, 6453.
| 1:CAS:528:DC%2BC38XhtVenurrM&md5=6f91a06e73134d8037a4fa2b6983b5e0CAS |
[19] P. Arora, B. Popov, R. E. White, J. Electrochem. Soc. 1998, 145, 807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFWltb8%3D&md5=43855541d324abde0a2b07e5fb795393CAS |
[20] S. Lee, Y. Cho, H. K. Song, K. T. Lee, J. Cho, Angew. Chem. Int. Ed. 2012, 51, 8748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFClsrfN&md5=6fbad3566ddf3a2af1cb97bbb7fd7a23CAS |
[21] D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, Y. Cui, Nano Lett. 2008, 8, 3948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygtL3N&md5=bfa752f2daacaab7636d7eb7c6150c8aCAS |
[22] A. Iqbal, Y. Iqbal, L. Chang, S. Ahmed, Z. Tang, Y. Gao, J. Nanopart. Res. 2012, 14, 1206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWhsrvP&md5=9b47eade4917186200d202ca5cddbb77CAS |
[23] L. Guoqiang, in Lithium Ion Batteries – New Developments (Ed. I. Belharouak) 2012, pp. 83–100 (InTech Publications: Rijeka, Croatia).
[24] J. H. Kim, Y. J. Hong, B. K. Park, Y. C. Kang, J. Ind. Eng. Chem. 2013, 19, 1204.
| 1:CAS:528:DC%2BC3sXktlKqtA%3D%3D&md5=9a936ac70019e09890bc47235feb96f4CAS |
[25] K. M. Shaju, P. G. Bruce, Dalton Trans. 2008, 5471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SlsbzI&md5=68708a5409b476b2d36e8f7cd9bd71bfCAS | 19082030PubMed |
[26] Z. Zhao, J. Ma, H. Tian, L. Xie, J. Zhou, P. Wu, Y. Wang, J. Tao, X. Zhu, J. Am. Ceram. Soc. 2005, 88, 3549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlalurzO&md5=506560627cfa8c0e9e4cbade8f8fa3d4CAS |
[27] H. Konishi, K. Suzuki, S. Taminato, K. Kim, S. Kim, J. Lim, M. Hirayama, R. Kanno, J. Power Sources 2014, 246, 365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCqt7zE&md5=5bd366288ba7ce6192515aba247818f8CAS |
[28] T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 1999, 81–82, 90.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. Y. Xu, S. Xie, N. Ding, B. L. Liu, Y. Shang, C. H. Chen, Electrochim. Acta 2006, 51, 4352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVahu78%3D&md5=67d60e18b8755608051d19444b4ffb32CAS |
[30] X. Wu, S. B. Kim, J. Power Sources 2002, 109, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFGhtLo%3D&md5=725903bf72ab1c0bbe4daee938b649fbCAS |
[31] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. R. Dahn, J. Electrochem. Soc. 1997, 144, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFemtLs%3D&md5=bb1b00a8b77be84dff8e6f054f591fd9CAS |
[32] Y. Idemoto, H. Narai, N. Koura, J. Power Sources 2003, 119–121, 125.
| Crossref | GoogleScholarGoogle Scholar |
[33] H. Seyyedhosseinzadeh, F. Mahboubi, A. Azadmehr, Electrochim. Acta 2013, 108, 867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eqtLjP&md5=617727f4935b30c3fca8e92462f85f8eCAS |
[34] X. Wu, S. B. Kim, J. Power Sources 2002, 109, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFGhtLo%3D&md5=725903bf72ab1c0bbe4daee938b649fbCAS |
[35] R. Alcántara, M. Jaraba, P. Lavela, J. L. Trado, Electrochim. Acta 2002, 47, 1829.
| Crossref | GoogleScholarGoogle Scholar |
[36] S. H. Park, S. W. Oh, S. T. Myung, Y. C. Kang, Y. K. Sun, Solid State Ion. 2005, 176, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVSmsQ%3D%3D&md5=140182b10b9165f156bad19ae8015b25CAS |
[37] J. H. Kim, S. T. Myung, Y. K. Sun, Electrochim. Acta 2004, 49, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFGltrs%3D&md5=b4ae6a586afcc7c354a55edcd3927ed2CAS |
[38] M. G. Lazarraga, L. Pascual, H. Gadjov, D. Kovacheva, K. Petrov, J. M. Marilla, R. M. Rojas, M. A. Martin-Luengo, J. M. Rojo, J. Mater. Chem. 2004, 14, 1640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFaqs7Y%3D&md5=cf400c143e873ab0dc211ae3b92d2cc5CAS |
[39] H. S. Fang, Z. Wang, X. Li, H. Guo, W. Peng, Mater. Lett. 2006, 60, 1273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2ksLs%3D&md5=4cd80f93a838fe6c9c0eeef7003d7cc4CAS |
[40] H. Fang, Z. Wang, B. Zhang, X. Li, G. Li, Electrochem. Commun. 2007, 9, 1077.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslahtL4%3D&md5=b3b3b067a44e51be0c62ba9a627e158bCAS |
[41] S. H. Park, S. W. Oh, S. H. Kang, I. Belharouak, K. Amine, Y. K. Sun, Electrochim. Acta 2007, 52, 7226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFaksr4%3D&md5=b231d38e22f50c003b03ba45c96b3ba0CAS |
[42] S. H. Park, S. W. Oh, C. S. Yoon, S. T. Myung, Y. K. Sun, Electrochem. Solid-State Lett. 2005, 8, A163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Wjt78%3D&md5=ee0334bc7063ae2b64ac11a94bf4ed3aCAS |
[43] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. R. Dahn, J. Electrochem. Soc. 1997, 144, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFemtLs%3D&md5=bb1b00a8b77be84dff8e6f054f591fd9CAS |
[44] Y. Idemoto, H. Narai, N. Koura, J. Power Sources 2003, 119–121, 125.
| Crossref | GoogleScholarGoogle Scholar |
[45] T. Ohzuku, K. Ariyoshi, S. Yamamoto, J. Ceram. Soc. Jpn. 2002, 110, 501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFGhsLg%3D&md5=1b8e3118a6bf487e90d009dbb01dcb2cCAS |
[46] Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio, I. Nakai, J. Solid State Chem. 2001, 156, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlGgtg%3D%3D&md5=ecd4c1571f1ba4a894554823684be148CAS |
[47] H. Fang, L. Li, G. Li, J. Power Sources 2007, 167, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvV2rs7o%3D&md5=3708c726634026fc557ed816f2d71cbcCAS |
[48] M. G. Lazarraga, L. Pascual, H. Gadjov, D. Kovacheva, K. Petrov, J. M. Amarilla, R. M. Rojas, M. A. Martin-Luengo, J. M. Rojo, J. Mater. Chem. 2004, 14, 1640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFaqs7Y%3D&md5=cf400c143e873ab0dc211ae3b92d2cc5CAS |
[49] Y. Gao, K. Myrtle, Phys. Rev. 1996, B54, 16670.
[50] X. Zhang, F. Cheng, J. Yang, J. Chen, Nano Lett. 2013, 13, 2822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslent7s%3D&md5=8a026323e2a207ed16aee5a9f5520f50CAS | 23679068PubMed |
[51] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. R. Dahn, J. Electrochem. Soc. 1997, 144, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFemtLs%3D&md5=bb1b00a8b77be84dff8e6f054f591fd9CAS |
[52] Q. A. Acton, Metals – Advances in Research and Applications 2011, Ch. 1, pp. 47–49 (Scholarly Editions: Atlanta, GA).
[53] S. Ullah, A. Badshah, F. Ahmed, R. Raza, A. A. Altaf, R. Hussain, Int. J. Electrochem. Sci. 2011, 6, 3801.
| 1:CAS:528:DC%2BC3MXht1Chsr%2FP&md5=95a36281570f4c6d69c890a76e0e8de7CAS |
[54] N. M. Daraz, Int. J. Electrochem. Sci. 2013, 8, 5203.
[55] X. Fang, N. Ding, X. Y. Feng, Y. Lu, C. H. Chen, Electrochim. Acta 2009, 54, 7471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WiurbK&md5=37e1240aeec392a9a472df363ceaf953CAS |
[56] S. R. Li, C. H. Chen, J. Camardese, J. R. Dahn, J. Electrochem. Soc. 2013, 160, A1517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2itr%2FO&md5=02a95d41a0793050cafda00d675cd410CAS |
[57] M. S. Kuthanapillil, P. G. Bruce, Dalton Trans. 2008, 40, 5471.
[58] A. V. Potapenko, S. I. Chernukhin, I. V. Romanova, K. S. Rabadanov, M. M. Gafurov, S. A. Kirillov, Proceedings of the International Conference Nanomaterials: Applications and Properties 2013, Vol. 2, p. 04NEA06 (Sumy State University: Sumy, Ukraine)
[59] X. Hao, B. M. Bartlett, J. Electrochem. Soc. 2013, 160, A3162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlKqsL0%3D&md5=2e009a4d9034756cd1eb3c3e0bdc3c46CAS |