Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

In-Situ Alloying Dynamics and Phase Morphology of Binary Polymer Blends

Jing-qing Li A , Gui-qiu Ma A B , Xu-bo Yuan A and Jing Sheng A B
+ Author Affiliations
- Author Affiliations

A Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

B Corresponding authors. Email: magq@tju.edu.cn; shengjing@tju.edu.cn




Gui-qiu Ma obtained her B.S. and M.S. degrees from Tianjin University in 1989 and 1998, respectively, before receiving her Ph.D. in materials science from Tianjin University in 2004. She was previously an assistant teacher (1989–1996), teacher (1996–2001), and associate professor (2002–2011) in Tianjin University. In 2009–2010, she was based at Osaka University as a visiting scientist. She is currently a full professor in Tianjin University (since 2011), working with Professor Jing Sheng and her research mainly focuses on the properties and structures of polymers and the plasma chemistry of polymers.



Jing Sheng is Professor of Polymer Science at Tianjin University. He obtained a B.S. in chemical engineering in 1961 and graduated in 1965 from Tianjin University. He then worked in the Institute of Natural Gas Chemical Engineering of Chongqing (1965–1973) before joining Tianjin University as a teacher (1973–1983), and later becoming Associate Professor (1983–1991) and Professor (since 1991). He was a visiting scientist at the University of Massachusetts (Amherst), USA (1980–1982), the director of the division of teaching research (1985–2001), and the director of the Institute of Materials Science and Engineering (2002–2007). Professor Sheng is currently an advisor of the Tianjin Key Laboratory of Composite and Functional Materials.

Australian Journal of Chemistry 67(1) 93-102 https://doi.org/10.1071/CH13335
Submitted: 30 June 2013  Accepted: 10 September 2013   Published: 7 October 2013

Abstract

In-situ alloying of polypropylene (PP)/polystyrene (PS) binary polymer blends using anhydrous aluminum chloride as a catalyst was investigated by small angle light scattering. The phase structures, morphology, and compatibilization effect in the obtained alloys during the in-situ alloying process were investigated by Rayleigh scattering. The content of compatible domains between the two phases of PP and PS in the in-situ alloys, i.e. the volume fraction of the interfacial transition layer, and the ‘invariant’ of the alloys were first calculated to describe the in-situ alloying dynamics, which reveals that the resulting in-situ PP/PS alloys are partially compatible. The relationship between the volume fraction of the interfacial transition layer or ‘invariant’ and the in-situ alloying reactive conditions are discussed in detail. The phase structural parameters, including correlation distance and average chord lengths, were calculated to characterize the phase size evolutions of the in-situ alloys, confirming the validity of using the volume fraction of the interfacial transition layer or ‘invariant’ to investigate the in-situ alloying dynamics.


References

[1]  C. A. Thomas, M. B. Moshier, H. E. Morris, R. W. Moshier, Anhydrous Aluminum Chloride in Organic Chemistry 1941 (Reinhold Publishing Corporation: New York, NY).

[2]  G. A. Olah, Ed., Friedel-Crafts and Related Reactions 1964 (Interscience: New York, NY).

[3]  B. Tamami, K. P. Boruieny, Tetrahedron Lett. 2004, 45, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSiurnJ&md5=275dfcb9317a20fba04a4126629adb03CAS |

[4]  N. E. Villarreal, B. I. Kharisov, I. I. Ivanova, B. V. Romanovskii, Appl. Catal. A Gen. 2002, 224, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVemtA%3D%3D&md5=d9951512fbf644d51e07966c07b2d5d1CAS |

[5]  X. D. Bi, D. K. Wang, Z. Wu, J. Mol. Catal. A: Chem 2002, 179, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlCktA%3D%3D&md5=b71e6cb924f2efae4d220937e3ebf7b2CAS |

[6]  T. Hirano, K. Higashi, M. Seno, T. Sato, Eur. Polym. J. 2003, 39, 1801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFGhtrc%3D&md5=b2b2a2c629f278368a4ec2b727358cc6CAS |

[7]  F. J. Chen, H. Cheradame, J. E. Stanat, G. Rissoan, U.S. Patent 5 874 380 1999.

[8]  M. A. Beckett, G. C. Strickland, Polymer 1996, 37, 4629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Kjtb4%3D&md5=b2fe9c36a7b3bbc43ce8dd33e9758595CAS |

[9]  H. Y. Yao, M. A. Mckinney, C. Dick, J. J. Liggat, C. E. Snape, C. A. Wilkie, Polym. Degrad. Stab. 2001, 72, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFWnsbg%3D&md5=caa5063e0d8317ce5d63c3abbee8886eCAS |

[10]  Z. T. Wang, D. D. Jiang, M. A. McKinney, C. A. Wilkie, Polym. Degrad. Stab. 1999, 64, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvF2isL8%3D&md5=4ea89ef269cd70c70b1de8536039e069CAS |

[11]  J. M. Li, C. A. Wilkie, Polym. Degrad. Stab. 1997, 57, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFeqtg%3D%3D&md5=5052723aec2a163120619bd35eeab2a4CAS |

[12]  Y. J. Sun, W. E. Baker, J. Appl. Polym. Sci. 1997, 65, 1385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlWju7o%3D&md5=5762b6b87872915059213bfe3aead4e4CAS |

[13]  M. F. Diaz, S. E. Barbosa, N. J. Capiati, J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 452.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFyksA%3D%3D&md5=f45e1a9165dcc59ed0afda1889e3d460CAS |

[14]  Y. Gao, J. H. Yin, Chin. J. Appl. Chem. 2002, 19, 822.
         | 1:CAS:528:DC%2BD38XnsFWmt7o%3D&md5=db55a847837a3158711c40dd4f3a6c72CAS |

[15]  W. L. Carrick, J. Polym. Sci., Part A: Polym. Chem. 1970, 1, 215.

[16]  Y. J. Sun, R. J. G. Willemse, T. M. Liu, W. E. Baker, Polymer 1998, 39, 2201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVyrsbo%3D&md5=efd2580b1d06c0c4e44dd870e69e079dCAS |

[17]  F. D. Monica, S. E. Barbosa, N. J. Capiati, Polymer 2005, 46, 6096.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Ismail, M. Nasir, Polym. Test. 2002, 21, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1ajsrg%3D&md5=5751586324b32997f4e82862fb0f101cCAS |

[19]  D. Hlavatá, J. Hromadkova, I. Fortelny, V. Hasova, J. Pulda, J. Appl. Polym. Sci. 2004, 92, 2431.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Z. Li, Y. Ke, Y. Hu, J. Appl. Polym. Sci. 2004, 93, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFektL0%3D&md5=70323873698f6e0cae31469ea1942f66CAS |

[21]  R. S. Stein, P. R. Wilson, J. Appl. Phys. 1962, 33, 1914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjsFag&md5=ec4a328a99aaca2378c231b6978c8ea3CAS |

[22]  A. Guinier, G. Fournet, Small-Angle Scattering of X-ray 1955, pp. 151–152 (John Wiley and Sons, Ions, Inc.: New York, NY).

[23]  A. Guinier, G. Fournet, Small-Angle Scattering of X-ray 1955, pp. 46–47 (John Wiley and Sons, Ions, Inc.: New York, NY).

[24]  F. B. Khambatta, F. Warner, T. Russell, R. S. Stein, J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 1391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsVeltrg%3D&md5=2f584d943c8140acd9de2008dc65efceCAS |

[25]  Y. P. Han, J. Sheng, Chinese J. Light Scattering 2001, 12, 203.

[26]  P. Mittelbach, G. Porod, Kolloid-Z 1965, 202, 40.
         | 1:CAS:528:DyaF2MXktVSgtLY%3D&md5=d434dd9902d7bd069f51f27aae0f3455CAS |

[27]  O. Kratky, Pure and Appl. Chem. 1966, 12, 483.
         | 1:CAS:528:DyaF2sXlsFyrsw%3D%3D&md5=6dd5c9319baf5eace2deb9ff8bad95dfCAS |