Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microwave-Assisted Synthesis of Arene Ruthenium(ii) Complex as Apoptosis Inducer of A549 Cells

Qiong Wu A , Jian Wu A , Wen-Jie Mei A C , Qi Wang A , Zhao Zhang A , Xiao-Hui Wu A , Fen-Yong Sun B C , Wei-Li Wu A , Yan-Hua Chen A , Xiao-Ying Hu A and Yun-Yi Tao A
+ Author Affiliations
- Author Affiliations

A School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.

B Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, 200072, China.

C Corresponding authors. Email: wenjiemei@126.com; sunfenyong@263.net

Australian Journal of Chemistry 66(11) 1422-1427 https://doi.org/10.1071/CH13269
Submitted: 28 May 2013  Accepted: 25 July 2013   Published: 13 September 2013

Abstract

An arene ruthenium(ii) complex coordinated with 2-(2-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, [(η6-C6H6)Ru(o-ClPIP)Cl]Cl (1), has been prepared by using microwave-assisted synthesis technology. The anti-tumour activity of this complex against various tumour cells has been evaluated by MTT assay and the results show that complex 1 exhibits selective inhibitory activity against the growth of human lung adenocarcinoma A549 cells with IC50 = 31.58 μM. Further studies by flow cytometric analysis showed that apoptosis of A549 cells was observed when dealt with complex 1. Furthermore, complex 1 exhibits excellent binding affinity with DNA molecules which was confirmed by spectroscopy methods, as well viscosity and melting point experiments. As a result, the conformation of DNA molecules was disturbed by complex 1.


References

[1]  H. K. Liu, P. J. Sadler, Acc. Chem. Res. 2011, 44, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFalu7g%3D&md5=93a7c7572b2bbd1be11857727d39f1beCAS | 21446672PubMed |

[2]  G. Süss-Fink, Dalton Trans. 2010, 39, 1673.
         | Crossref | GoogleScholarGoogle Scholar | 20449402PubMed |

[3]  G. S. Smith, B. Therrien, Dalton Trans. 2011, 40, 10793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlShu73J&md5=6b0109ef636d19c011a30b67860d47a7CAS | 21858344PubMed |

[4]  P. Nowak-Sliwinska, J. R. Beijnum, A. Casini, A. A. Nazarov, G. Wagniėres, H. Bergh, P. J. Dyson, A. W. Griffioen, J. Med. Chem. 2011, 54, 3895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFWqs7s%3D&md5=1620df21ec152f973f829f61b2c84176CAS | 21534534PubMed |

[5]  M. G. Mendoza-Ferri, C. G. Hartinger, A. A. Nazarov, R. E. Eichinger, M. A. Jakupec, K. K. Severin, B. K. Keppler, Organometallics 2009, 28, 6260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KntrjE&md5=6e046a6d62852a6b47ddf8b9a158818fCAS |

[6]  B. Therrien, Coord. Chem. Rev. 2009, 253, 493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKrsLfK&md5=df25088ca9e631f671a43b07ad668c61CAS |

[7]  J. Canivet, L. Karmazin-Brelot, G. Süss-Fink, J. Organomet. Chem. 2005, 690, 3202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWitbg%3D&md5=e72cd90f342c9ac821f058b8617fc97aCAS |

[8]  A. Martínez, C. S. K. Rajapakse, R. Sánchez-Delgado, A. Varela-Ramirez, C. Lema, R. J. Aguilera, R. A. Sánchez-Delgado, J. Inorg. Biochem. 2010, 104, 967.
         | Crossref | GoogleScholarGoogle Scholar | 20605217PubMed |

[9]  A. Astarina, M. J. Chow, W. H. Ang, Aust. J. Chem. 2012, 65, 1271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksbrP&md5=f1028f92ff419421ab572ca964ede906CAS |

[10]  T. Ohkuma, N. Utsumi, K. Tsutsumi, K. Murata, C. Sandoval, R. Noyori, J. Am. Chem. Soc. 2006, 128, 8724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVSjsbs%3D&md5=0251df644d1c94e3c75a0410079af221CAS | 16819854PubMed |

[11]  H. C. Lo, O. Buriez, J. B. Kerr, R. H. Fish, Angew. Chem. Int. Ed. 1999, 38, 1429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVyksLw%3D&md5=c5b79d4adcb92d7a85ec803a1284cdd4CAS |

[12]  C. Scolaro, A. Bergamo, L. Brescacin, R. Delðno, M. Cocchietto, G. Laurenczy, T. J. Geldbach, G. Sava, P. J. Dyson, J. Med. Chem. 2005, 48, 4161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlCrsL0%3D&md5=b175497a708f0fb3967dcdaa06af2043CAS | 15943488PubMed |

[13]  A. K. Renfrew, A. D. Phillips, E. Tapavicza, R. Scopelliti, U. Rothlisberger, P. J. Dyson, Organometallics 2009, 28, 5061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslaht74%3D&md5=18bd78b578f5ae952c926d0b551334f8CAS |

[14]  F. Y. Wang, J. J. Xu, A. Habtemariam, J. Bella, P. J. Sadler, J. Am. Chem. Soc. 2005, 127, 17734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gjt7nL&md5=bf894b64732f8bc0cc9d107f57265f3cCAS |

[15]  A. F. A. Peacock, P. J. Sadler, Chem. – Asian J. 2008, 3, 1890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjt73L&md5=656099bf319a8980d2fb88960112a682CAS |

[16]  S. W. Magennis, A. Habtemariam, O. Novakova, J. B. Henry, S. Meier, S. Parsons, I. D. H. Oswald, V. Brabec, P. J. Sadler, Inorg. Chem. 2007, 46, 5059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFCjsL0%3D&md5=d6129f4a49c9a48ada66900947c2a536CAS | 17497848PubMed |

[17]  M. R. Gill, J. Garcia-Lara, S. J. Foster, C. Smythe, G. Battaglia, J. A. Thomas, Nat. Chem. 2009, 1, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSgs7zO&md5=b6971a2fc173c0b01f46f74d701eb0ffCAS | 21378959PubMed |

[18]  H. Chen, J. A. Parkinson, R. E. Morris, P. J. Sadler, J. Am. Chem. Soc. 2003, 125, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFCnsLg%3D&md5=7435f3e8474a5b685baf4a76f98fe04bCAS | 12515520PubMed |

[19]  G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 2011, 54, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeksb3N&md5=3f915fc88eb030c6c8bc5c3ed2a152adCAS | 21077686PubMed |

[20]  W. J. Mei, X. Y. Wei, Y. J. Liu, B. Wang, Trans. Met. Chem. 2008, 33, 907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGlsb%2FM&md5=828ac6378ef3b5ea14f2e37e6b83f493CAS |

[21]  T. Chen, Y. Liu, W. J. Zheng, J. Liu, Y.-S. Wong, Inorg. Chem. 2010, 49, 6366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFyqsL8%3D&md5=d47731765e9bc4a2060f2bdfd6247214CAS | 20527894PubMed |

[22]  S. Shi, T. Xie, T. M. Yao, C. R. Wang, X. T. Geng, D. J. Yang, L. J. Han, L. N. Ji, Polyhedron 2009, 28, 1355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslKqtrg%3D&md5=a5a52c6ad7a2c6a119106366687692ceCAS |

[23]  H. Xu, K. C. Zheng, Y. Chen, Y. Z. Li, L. J. Lin, H. Li, P. X. Zhang, L. N. Ji, J. Chem. Soc., Dalton Trans. 2003, 2260,
         | Crossref | GoogleScholarGoogle Scholar |

[24]  K. J. Du, J. Q. Wang, J. F. Kou, G. Y. Li, L. L. Wang, H. Chao, L. N. Ji, Eur. J. Med. Chem. 2011, 46, 1056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFWhsbg%3D&md5=85694213019b82538a96b19f5625c854CAS | 21295892PubMed |

[25]  D. D. Sun, W. Z. Wang, J. W. Mao, W. J. Mei, J. Liu, Bioorg. Med. Chem. Lett. 2012, 22, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOktA%3D%3D&md5=900cfdd25dec0d21135158201e6c7222CAS | 22172699PubMed |

[26]  Q. Wu, C. D. Fan, T. F. Chen, C. R. Liu, W. J. Mei, S. D. Chen, B. G. Wang, Y. Y. Chen, W. J. Zheng, Eur. J. Med. Chem. 2013, 63, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFams7s%3D&md5=a4b5c10b00301b678385036c544b3318CAS | 23455057PubMed |

[27]  V. Rajendiran, M. Murali, E. Suresh, S. Sinha, K. Somasundaram, M. Palaniandavar, Dalton Trans. 2008, 148,
         | Crossref | GoogleScholarGoogle Scholar |

[28]  Z. Zhang, Q. Wang, Q. Wu, X. Y. Hu, C. X. Wang, W. J. Mei, Y. Y. Tao, W. L. Wu, W. J. Zheng, Chem. J. Chin. Univer. 2012, 33, 2441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKlsL3J&md5=5b177f49f1f1ffedb0c436598476fff7CAS |

[29]  Q. Wu, J. Wu, W. J. Mei, J. H. Yao, W. L. Wu, Y. H. Chen, Y. Y. Tao, Chin. J. Org. Chem. 2013, in press.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  T. Chen, Y. S. Wong, Biomed. Pharmacother. 2009, 63, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSgsLo%3D&md5=f4a7fc5f670a91aa560c8f4dd08ae708CAS | 18511231PubMed |

[31]  T. Chen, Y. S. Wong, J. Agric. Food Chem. 2008, 56, 10574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSqtbvM&md5=14330aac818ba6936db89ad0aefa61d8CAS | 18959417PubMed |

[32]  D. Adam, Nature 2003, 421, 571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFKjuw%3D%3D&md5=1991851123ec3f466ac1352c74e5e5d9CAS | 12571563PubMed |

[33]  C. A. Vock, C. Scolaro, A. D. Phillips, R. Scopelliti, G. Sava, P. J. Dyson, J. Med. Chem. 2006, 49, 5552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVClu7w%3D&md5=a5ff6844c980bcb95965c59f4cc5505cCAS | 16942028PubMed |

[34]  W. J. Mei, J. Liu, K. C. Zheng, L. J. Lin, H. Chao, A. X. Li, F. C. Yun, L. N. Ji, Dalton Trans. 2003, 1352,
         | Crossref | GoogleScholarGoogle Scholar |

[35]  W. J. Mei, J. Liu, H. Chao, L. N. Ji, Trans. Metal Chem. 2003, 28, 852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFCntLk%3D&md5=3ec268605e38236a61c679b5c51f04d9CAS |

[36]  B. C. Baguley, M. L. Bret, Biochemistry 1984, 23, 937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXotFelsA%3D%3D&md5=0e6c7f79817082632476fca0a24e14a8CAS | 6546881PubMed |

[37]  R. F. Pasternack, M. Caccam, B. Keogh, T. A. Stephenson, A. P. Williams, E. J. Gibbs, J. Am. Chem. Soc. 1991, 113, 6835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVyktr8%3D&md5=cb67a29ca0e25b55c8923b696491372aCAS |

[38]  P. Zhang, J. Chen, Y. Liang, Acta Biochim. Biophys. Sin. 2010, 42, 440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlCjtbk%3D&md5=abe340e290ef60b024e3f53be476489aCAS | 20705582PubMed |

[39]  A. Mills, Analyst 1998, 123, 1135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislyrsLY%3D&md5=030c8c1fbfba4de76707f652e62e3a00CAS |

[40]  C. C. Ju, A. G. Zhang, C. L. Yuan, X. L. Zhao, K. Z. Wang, J. Inorg. Biochem. 2011, 105, 435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFOru7k%3D&md5=639510f44c1f5a491a08fbd5903c49b1CAS | 21421130PubMed |

[41]  B. Peng, X. Chen, K. J. Du, B. L. Yu, H. Chao, L. N. Ji, Spectrochim. Acta A 2009, 74, 896.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  V. V. Koval, D. V. Pyshnyi, O. S. Fedorova, J. Biomol. Struct. Dyn. 2001, 19, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntV2ltA%3D%3D&md5=cb72635b7c91a656c55b385858771043CAS | 11790149PubMed |

[43]  J. Sun, S. Wu, Y. Han, J. Liu, L. N. Ji, Z. W. Mao, Inorg. Chem. Commun. 2008, 11, 1382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGisrrE&md5=13b3874a3a7822274e40a06e45d211a5CAS |