Non-enzymatic Glucose Sensor Based on Palladium Coated Nanoporous Gold Film Electrode
Nahid Tavakkoli A B and Shekofe Nasrollahi AA Chemistry Department, Payame Noor University, 19395-3697 Tehran, Iran.
B Corresponding author. Email: Tavakkolinahid@yahoo.com
Australian Journal of Chemistry 66(9) 1097-1104 https://doi.org/10.1071/CH13238
Submitted: 8 May 2013 Accepted: 13 June 2013 Published: 24 July 2013
Abstract
The non-enzymatic voltammetric and amperometric detection of glucose using a palladium coated nanoporous gold film electrode is described. The effect of surfactant on the fabrication of nanoporous gold film was also investigated. The voltammetric detection of glucose was performed by cyclic voltammetry. The sensor had good electrocatalytic activity towards oxidation of glucose, exhibited a rapid response (~6 s), and gave a linear range from 1 to 33 mM with a detection limit of 5 μM (with a signal to noise ratio of 3). The wide dynamic range, long-term stability, high sensitivity and selectivity, good reproducibility, and high resistance towards electrode fouling resulted in an ideal inexpensive amperometric glucose biosensor applicable for complex matrices.
References
[1] S. R. Lee, Y. T. Lee, K. Sawada, H. Takao, M. Ishida, Biosens. Bioelectron. 2008, 24, 410.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKmu7fP&md5=230e24391a96440b598436f217a08ef9CAS | 18524563PubMed |
[2] L. Wu, X. Zhang, H. Ju, Biosens. Bioelectron. 2007, 19, 141.
[3] P. Du, B. Zhou, C. X. Cai, J. Electroanal. Chem. 2008, 614, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1aitb4%3D&md5=4f2aaf894088b85cbd538cd135b56115CAS |
[4] Y. T. Wang, L. Yu, Z. Q. Zhu, J. Zhang, J. Z. Zhu, C. H. Fan, Sens. Actuators B Chem. 2009, 136, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvF2ntrk%3D&md5=daf16c91eb0efb9463231ef672ac829fCAS |
[5] M. Yang, Y. Yang, Y. Liu, G. Shen, R. Yu, Biosens. Bioelectron. 2006, 21, 1125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCktLbL&md5=ac58b4a73e09a35382d43620d7267eedCAS | 15885999PubMed |
[6] M. Yang, Y. Yang, H. Yang, G. Shen, R. Yu, Biomaterials 2006, 27, 246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVShtbzL&md5=7c54b315934df858bf1392986fe5d1ffCAS | 16026820PubMed |
[7] S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luong, Anal. Chem. 2004, 76, 1083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVChs78%3D&md5=d966e3faba1008aca84b100a2773bb11CAS | 14961742PubMed |
[8] R. Wilson, A. P. F. Turner, Biosens. Bioelectron. 1992, 7, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlSnu78%3D&md5=8f18a080d2081b109baca22a252b5c1bCAS |
[9] S. T. Farrell, C. B. Breslin, Electrochim. Acta 2004, 49, 4497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslCksbc%3D&md5=37f70a3d08834b4a106600b54f76aa07CAS |
[10] A. Salimi, M. Roushani, Electrochem. Commun. 2005, 7, 879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1WqtL4%3D&md5=11c22a82913fa8ddd26b32259dbf15b6CAS |
[11] Y. Sun, H. Buck, T. E. Mallouk, Anal. Chem. 2001, 73, 1599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKhsL8%3D&md5=c6006a8a4be68aa72116c5ad1e130d7cCAS | 11321315PubMed |
[12] J. Zhao, F. Wang, J. Yu, S. Hu, Talanta 2006, 70, 449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlWgtro%3D&md5=9daf2f7e7128f02b735495b016168064CAS | 18970791PubMed |
[13] Y. Li, Y. Y. Song, C. Yang, X. H. Xia, Electrochem. Commun. 2007, 9, 981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslags70%3D&md5=478463e5064479442e60539edeb38325CAS |
[14] Q. Shen, L. Jiang, H. Zhang, Q. Min, W. Hou, J. J. Zhu, J. Phys. Chem. C 2008, 112, 16392.
[15] H. Zhu, X. Lu, M. Li, Y. Shao, Z. Zhu, Talanta 2009, 79, 1446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2lsbo%3D&md5=27ed843931ff0f609186d62eb2bfefc7CAS | 19635383PubMed |
[16] F. Xiao, F. Zhao, Y. Zhang, G. Guo, B. Zeng, J. Phys. Chem. C 2009, 113, 849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ek&md5=c50987e6183f4183ff5a24fc99947366CAS |
[17] Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Chem. – Eur. J. 2005, 11, 2177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislOguro%3D&md5=435948bdca909bc2b23cf0e4b1ba65aaCAS | 15714534PubMed |
[18] M. Sakamoto, K. Takamura, Bioelectrochem. Bioenerg. 1982, 9, 571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvFWisw%3D%3D&md5=c5a1a42944b9246b8bcac76979c00557CAS |
[19] J. Wang, D. F. Thomas, A. Chen, Anal. Chem. 2008, 80, 997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFykug%3D%3D&md5=2eac3e663880d53fa5b2f7145292429aCAS | 18197691PubMed |
[20] G. Wittstock, A. Strubing, R. Szargan, G. Werner, J. Electroanal. Chem. 1998, 444, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFKgt78%3D&md5=c4f6a59688cc1ec05d444151c833d9d2CAS |
[21] X. Zhang, K. Y. Chan, J. K. You, Z. G. Lin, A. C. C. Tseung, J. Electroanal. Chem. 1997, 430, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1ersrw%3D&md5=5b9749267edff4a7f5c455788a8cc1ccCAS |
[22] F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Biosens. Bioelectron. 2009, 24, 3481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslaitLc%3D&md5=d5b4f927a30d41cc810d0bcf8232fe36CAS | 19524431PubMed |
[23] M. Andersen, O. Lytken, J. Engbæk, G. Nielsen, N. Schumacher, M. Johansson, I. Chorkendorff, Catal. Today 2005, 100, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1SmsrY%3D&md5=2f64dd20a70d325e733ea70b5ac73538CAS |
[24] F. Maroun, F. Ozanam, O. M. Magnussen, R. J. Behm, Science 2001, 293, 1811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVSlurc%3D&md5=6706819f3bf1f726c21428b55d818ee6CAS | 11546868PubMed |
[25] A. M. El-Aziz, R. Hoyer, L. A. Kibler, D. M. Kolb, Electrochim. Acta 2006, 51, 2518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFGntr8%3D&md5=712818f34945e9ae1c9a0354ba4cbf4aCAS |
[26] B. Álvarez, V. Climent, A. Rodes, J. M. Feliu, Phys. Chem. Chem. Phys. 2001, 3, 3269.
| Crossref | GoogleScholarGoogle Scholar |
[27] A. M. El-Aziz, L. A. Kibler, D. M. Kolb, Electrochem. Commun. 2002, 4, 539.
[28] L. A. Kibler, A. M. El-Aziz, D. M. Kolb, J. Mol. Catal. Chem. 2003, 57, 63.
[29] M. H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. B. Vukmirovicr, R. Adzic, Langmuir 2006, 22, 10409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Kkt7c%3D&md5=d2eb7c1a82191bbd0d0a0d9f1e4cc44fCAS | 17129009PubMed |
[30] L. A. Kibler, M. Kleinert, R. Randler, D. M. Kolb, Surf. Sci. 1999, 443, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Smtrs%3D&md5=53e99ec1b56b1d91cd05f75701675cc3CAS |
[31] J. T. Zhang, P. P. Liu, H. Y. Ma, Y. Ding, J. Phys. Chem. C 2007, 111, 1038.
[32] X. B. Ge, R. Y. Wang, P. P. Liu, Y. Ding, Chem. Mater. 2007, 19, 5827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WltbzO&md5=2512cb0ead2f465c1dd8e8268f3db44dCAS |
[33] W. Gao, X. H. Xia, J. J. Xu, H. Y. Chen, J. Phys. Chem. C 2007, 111, 12213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlOjtbw%3D&md5=d056fa6651c3d1b6ee742cae6e04cb9bCAS |
[34] Y. Li, Y. Y. Song, C. Yang, X. H. Xia, Electrochem. Commun. 2007, 9, 981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslags70%3D&md5=478463e5064479442e60539edeb38325CAS |
[35] D. van Noort, C. F. Mandenius, Biosens. Bioelectron. 2000, 15, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlKnsr4%3D&md5=c0b601d34281b9b8e9792937b97e346aCAS | 11286338PubMed |
[36] A. Kiani, E. Nekooiy Fard, Electrochim. Acta 2009, 54, 7254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wiur7E&md5=5457583c06f974df06307c38c7b45c0eCAS |
[37] L. Angnes, E. M. Richter, M. A. Augelli, G. H. Kume, Anal. Chem. 2000, 72, 5503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFSrs7c%3D&md5=1831eb0f436310a2661a754ac19e557eCAS | 11080906PubMed |
[38] F. Jia, C. Yu, Z. Ai, L. Zhang, Chem. Mater. 2007, 19, 3648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVyjs74%3D&md5=42340a91dc3e1e90195f2c19b4ca975bCAS |
[39] F. Jia, C. Yu, K. Deng, L. Zhang, J. Phys. Chem. 2007, 111, 8424.
| 1:CAS:528:DC%2BD2sXlvVSqu70%3D&md5=060d942db78c6305cf70e3e463f39ca4CAS |
[40] S. Trasatti, O. A. Petrii, Pure Appl. Chem. 1991, 63, 711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisFGmtrg%3D&md5=b16e419368adf842ec44fcad7f726c1cCAS |
[41] N. Tavakkoli, Sh. Nasrollahi, G. Vatankhah, Electroanalysis 2012, 24, 368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVSgtA%3D%3D&md5=b1cf58e35979bce09fe4b04ae4c4c851CAS |
[42] Y. Bai, W. Yang, Y. Sun, C. Sun, Sens. Actuators B Chem. 2008, 134, 471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFersL%2FP&md5=575cf7f82ae39bb9d141fb720bdba4a5CAS |
[43] S. B. Aoun, Z. Dursun, T. Koga, G. S. Bang, T. Sotomura, I. J. Taniguchi, J. Electroanal. Chem. 2004, 567, 175.
| Crossref | GoogleScholarGoogle Scholar |
[44] J. Shi, P. Ci, F. Wang, H. Peng, P. Yang, L. Wang, S. Ge, Q. Wang, P. K. Chu, Biosens. Bioelectron. 2011, 26, 2579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVCisQ%3D%3D&md5=9b68dd111fd2b4b05fbc486bf01a947dCAS | 21131190PubMed |
[45] L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem. 2009, 81, 7271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Klt7s%3D&md5=d3cf95ce76d71e61c3a40fa41d85b68fCAS | 19715358PubMed |
[46] G. F. Wang, Y. Wei, W. Zhang, X. J. Zhang, B. Fang, L. Wang, Microchim. Acta 2010, 168, 87.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wksb4%3D&md5=a1d183e4bfddc4611decef54853a0473CAS |
[47] Y. Myung, D. M. Jang, Y. J. Cho, H. S. Kim, J. Park, J. U. Kim, Y. Choi, C. J. Lee, J. Phys. Chem. C 2009, 113, 1251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWltg%3D%3D&md5=ad37d21148e56af48089584e9e431acfCAS |