Engineering the Design of Brightly-Emitting Luminescent Nanostructured Photonic Composite Systems
Mei Chee Tan A E , Dominik J. Naczynski B , Prabhas V. Moghe B C and Richard E. Riman DA Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682.
B Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
C Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
D Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
E Corresponding author. Email: meichee.tan@sutd.edu.sg
Mei Chee Tan is currently an assistant professor at the Singapore University of Technology and Design. She graduated with a bachelor's degree in chemical engineering, and earned her master's and doctorate degrees with the Singapore-MIT Alliance at the National University of Singapore. She then continued to build on her research experience as a post-doctoral researcher at Rutgers, The State University of New Jersey. She has extensive experience in synthesis, modification, and characterization of optical nanomaterials with controlled sizes and morphologies for biomedical applications and energy-efficient illuminators. Her future research activities will focus on the study and engineering of tailored interfaces. |
Dominik J. Naczynski graduated from Cornell University in 2006 with a B.S. degree in chemical and biomolecular engineering and a minor in biomedical engineering. In 2012, he received his Ph.D. under the supervision of Drs Prabhas Moghe and Charles Roth at Rutgers University. His thesis concentrated on the development of biologically interactive nanoparticles for infrared disease imaging and therapy. He is currently a post-doctoral fellow in the School of Medicine at Stanford University under the guidance of Dr Lei Xing. His research interests include designing multimodal imaging agents for investigating the underlying mechanisms of cancer development, progression, and therapeutic response. |
Prabhas Moghe is distinguished Professor and Vice-Chair of Biomedical Engineering and Professor of Chemical and Biochemical Engineering at Rutgers University. Dr Moghe's research interests are in regenerative medicine and nanomedicine. An International Fellow of Biomaterials Science and Engineering (FBSE), and Fellow of the American Institute of Medical and Biological Engineering (AIMBE), Dr Moghe has authored more than 75 publications, ~250 presentations and proceedings, and supervised more than 25 Ph.D. students to date. Dr Moghe directs an NSF IGERT program on stem cells, and leads NIH projects on polymeric therapeutics, near-infrared nanocomposite imaging probes, and resource core on cell profiling of polymeric biomaterials. |
Richard Riman is distinguished Professor of Materials Science and Engineering at Rutgers, The State University of New Jersey. His research focuses on ceramic manufacturing methods that provide sustainable solutions to technological and environmental problems, and spans photonic, biomedical, electronic, and structural materials. Professor Riman founded Solidia Technologies, a company providing green construction materials for buildings and infrastructure. He holds a B.S. degree in ceramic engineering from Rutgers and a Ph.D. from MIT in materials science and engineering. He is the recipient of many prestigious awards, including awards from NIH, NSF, ALCOA, DuPont, Johnson & Johnson, and the American Ceramic Society. |
Australian Journal of Chemistry 66(9) 1008-1020 https://doi.org/10.1071/CH13221
Submitted: 30 April 2013 Accepted: 25 July 2013 Published: 27 August 2013
Abstract
Rare-earth doped infrared emitting composites have extensive applications in integrated optical devices such as fibre amplifiers and waveguides for telecommunications, remote sensing, and optoelectronics. In addition, recent advancements in infrared optical imaging systems have expanded the biomedical applications for infrared-emitting composites in diagnosis and imaging of living tissue systems both in vitro and in vivo. Composite systems combine the advantages of polymers (light weight, flexibility, good impact resistance, improved biomedical compatibility, and excellent processability) and inorganic phosphor host materials (low phonon energy, intense emissions, chemical durability, and high thermal stability). This paper provides a brief review of our research progress in the design and synthesis of luminescent photonic nanocomposite systems comprised of rare-earth doped particulates dispersed in a continuous polymeric matrix. The design of brightly-emitting rare-earth doped materials and the influence of host and dopant chemistries on the emission properties are discussed. Methods used to assess and measure the phosphors’ performance are also evaluated in this work. This paper will also examine the solvothermal synthesis method used to control the physical and chemical characteristics of the rare-earth doped particles, and how these characteristics impact the infrared optical properties. Also presented here are recent advances reported with luminescent nanocomposite systems fabricated for optical waveguides and biomedical imaging.
References
[1] P. M. Becker, A. A. Olsson, J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology 1999 (Elsevier Science: San Diego, CA).[2] A. Polman, Proc. SPIE – Int. Soc. Opt. Eng. 2000, 3942, 2.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFOktbo%3D&md5=fa43f5f21bfda88eacb8ee82b80db4c7CAS |
[3] M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded 2002 (Taylor & Francis: New York, NY).
[4] A. Polman, F. C. J. M. van Veggel, J. Opt. Soc. Am. B 2004, 21, 871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslensbY%3D&md5=1517a6c849aa6f2e08c71c837a75163aCAS |
[5] M. Dejneka, R. E. Riman, E. Snitzer, J. Am. Ceram. Soc. 1993, 76, 3147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXotl2mug%3D%3D&md5=741edfccbeabfd5e1cee0b034464ff6fCAS |
[6] R. A. McFarlane, M. Lui, D. Yap, IEEE J. Sel. Top. Quantum Electron. 1995, 1, 82.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1SntLo%3D&md5=bafc1dd533e7bb7d4524f2f71e6839bdCAS |
[7] J. Ballato, M. Dejneka, R. E. Riman, E. Snitzer, W. Zhou, J. Mater. Res. 1996, 11, 841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlSnurY%3D&md5=22bc1b7049762ee06d5ad6bbbb76e501CAS |
[8] M. Guglielmi, A. Martucci, E. Menegazzo, G. C. Righini, S. Pelli, J. Fick, G. Vitrant, J. Sol-Gel Sci. Technol. 1997, 8, 1017.
| 1:CAS:528:DyaK2sXitlOjsLg%3D&md5=5294a5ffaf828193b6c2be8b2fa39bddCAS |
[9] P. D. Townsend, Vacuum 1998, 51, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlelt7o%3D&md5=95a8c03b5af27f920f7e91eb0d513b68CAS |
[10] L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, A. Polman, Appl. Phys. Lett. 2000, 76, 3682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktV2nt70%3D&md5=0cf3882042e04c3675a8d29dc3725fd3CAS |
[11] A. J. Steckl, J. C. Heikenfeld, D.-S. Lee, M. J. Garter, C. C. Baker, Y. Wang, R. Jones, IEEE J. Sel. Top. Quantum Electron. 2002, 8, 749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVGltLw%3D&md5=b7fada8905e3625968c8d5e8fc8a77f1CAS |
[12] G. A. Kumar, R. Riman, E. Snitzer, J. Ballato, J. Appl. Phys. 2004, 95, 40.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFOhtbc%3D&md5=2fa283101f2e0adfec4677b958179047CAS |
[13] C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, J. Opt. Soc. Am. B 1997, 14, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFyjtw%3D%3D&md5=ab1c0c7433f4602c048b67009f288236CAS |
[14] R. E. Riman, G. A. Kumar, S. Banerjee, J. G. Brennan, J. Am. Ceram. Soc. 2006, 89, 1809.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVamurg%3D&md5=0edc582c28485f46724691d6bf902c07CAS |
[15] J. Ballato, D. Smith, R. E. Riman, Proc. SPIE – Int. Soc. Opt. Eng. 2006, 6124, 61240Y/1.
| 1:CAS:528:DC%2BD28XjtVSht70%3D&md5=4359b0ac3a7310f0ee31d531ba6d87d8CAS |
[16] B. F. Moore, G. A. Kumar, M.-C. Tan, J. Kohl, R. E. Riman, M. G. Brik, T. J. Emge, J. G. Brennan, J. Am. Chem. Soc. 2011, 133, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGltrvN&md5=62594467d708630d08babb7fd2575b56CAS | 21142152PubMed |
[17] A. Kornienko, B. F. Moore, G. A. Kumar, M.-C. Tan, R. E. Riman, M. G. Brik, T. J. Emge, J. G. Brennan, Inorg. Chem. 2011, 50, 9184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVylsrjK&md5=616a2282940c7d575b7bffcaaa7ef74cCAS | 21866912PubMed |
[18] L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, J. W. Hofstraat, J. Appl. Phys. 2002, 91, 3955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVersbo%3D&md5=1b54aa57d8b2210e706757ba3927d280CAS |
[19] G. A. Kumar, C. W. Chen, J. Ballato, R. E. Riman, Chem. Mater. 2007, 19, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitF2htb0%3D&md5=ba5cc139954bbdbee5e21f8525d1ed69CAS |
[20] K. Binnemans, Chem. Rev. 2009, 109, 4283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleltLk%3D&md5=f73a5ac9458415909983968d70561eaaCAS | 19650663PubMed |
[21] J. C. Boyer, N. J. J. Johnson, F. C. J. M. van Veggel, Chem. Mater. 2009, 21, 2010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFOksrw%3D&md5=d7a8e230b4734805c716101894fcf0e6CAS |
[22] R. Chai, H. Lian, C. Li, Z. Cheng, Z. Hou, S. Huang, J. Lin, J. Phys. Chem. C 2009, 113, 8070.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFymtrY%3D&md5=7b7583c06b1975c2c7e3793be07532e1CAS |
[23] R. Chai, H. Lian, Z. Cheng, C. Zhang, Z. Hou, Z. Xu, J. Lin, J. Colloid Interface Sci. 2010, 345, 262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Oku70%3D&md5=a7412a01ce5ad280e6d0894883211b54CAS | 20172531PubMed |
[24] R. Chai, H. Lian, Z. Hou, C. Zhang, C. Peng, J. Lin, J. Phys. Chem. C 2010, 114, 610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVClu77I&md5=8f3ab28087fe239393974139bd4d7f42CAS |
[25] M. C. Tan, S. D. Patil, R. E. Riman, ACS Appl. Mater. Interfaces 2010, 2, 1884.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2isLw%3D&md5=8e5f40c823d73677edc9358ca5ae4102CAS | 20533832PubMed |
[26] K. Tsujiuchi, A. Okada, D. Matsuura, K. Soga, J. Photopolym. Sci. Technol. 2009, 22, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCiurw%3D&md5=6b7c1a638b17fbf8fc82f289e7591beeCAS |
[27] J. V. Frangioni, Curr. Opin. Chem. Biol. 2003, 7, 626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12hsL0%3D&md5=3df04c02e0517344a80f782e7bf671b9CAS | 14580568PubMed |
[28] A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlygsLbL&md5=9f39b711207eb3c9085087c767c6ccbeCAS | 19898521PubMed |
[29] M. C. Tan, G. A. Kumar, R. E. Riman, M. G. Brik, E. Brown, U. Hommerich, J. Appl. Phys. 2009, 106, 063118/1.
| 1:CAS:528:DC%2BD1MXht1WmtbbK&md5=a86581c85f9e63242854272729565109CAS |
[30] S. A. Hilderbrand, R. Weissleder, Curr. Opin. Chem. Biol. 2010, 14, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qtLw%3D&md5=44208be1aaabf31a32f61180d6ead23bCAS | 19879798PubMed |
[31] D. J. Naczynski, M.-C. Tan, R. E. Riman, C. Roth, P. V. Moghe, WO2012151593A1 2012.
[32] B. van Saders, L. Al-Baroudi, M. C. Tan, R. E. Riman, Opt. Mater. Express 2013, 3, 566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslGjsr8%3D&md5=d0d1f10194df850515f5c10a7b00e15eCAS |
[33] D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, P. V. Moghe, Nat. Commun. 2013, 4, 2199.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sfislSrsA%3D%3D&md5=0c7db041b7e55e6b339f1f59c6d9fae4CAS | 23873342PubMed |
[34] D. J. Naczynski, T. Andelman, D. Pal, S. Chen, R. E. Riman, C. M. Roth, P. V. Moghe, Small 2010, 6, 1631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVClt7k%3D&md5=e459edec07e276713454ff94ac2dd822CAS | 20586056PubMed |
[35] M. Cui, D. J. Naczynski, M. Zevon, C. K. Griffith, L. Sheihet, I. Poventud-Fuentes, S. Chen, C. M. Roth, P. V. Moghe, Adv. Healthcare Mater. 2013,
| Crossref | GoogleScholarGoogle Scholar |
[36] Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, J. V. Frangioni, Mol. Imaging 2003, 2, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslKnu78%3D&md5=9dc30064f1a2cb73d228a161ee75a083CAS | 12926237PubMed |
[37] W. R. Caseri, Mater. Sci. Technol. 2006, 22, 807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKms7g%3D&md5=b53e466873d687f431c34a80502cb3c7CAS |
[38] H. Althues, J. Henle, S. Kaskel, Chem. Soc. Rev. 2007, 36, 1454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ygtbo%3D&md5=5c6d3090b7b78ad6be30f5c1c0b07756CAS | 17660878PubMed |
[39] G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, J. Ballato, Appl. Phys. Lett. 2005, 86, 241105/1.
| 1:CAS:528:DC%2BD2MXlsFGmt74%3D&md5=e414e6f4ea3f024a05c5cc215dc5dfe5CAS |
[40] J. R. DiMaio, B. Kokuoz, J. Ballato, J. Am. Chem. Soc. 2008, 130, 5628.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVShu7k%3D&md5=96d654a3191505ad84003abfd48f1948CAS | 18396875PubMed |
[41] J. Ballato, S. Foulger, J. D. W. Smith, J. Opt. Soc. Am. B 2003, 20, 1838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVansrk%3D&md5=23a5c0c345e9a1202da443337c955c3cCAS |
[42] J. Ballato, S. H. Foulger, J. D. W. Smith, J. Opt. Soc. Am. B 2004, 21, 958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslentrY%3D&md5=7d4f746893fd942a10d1e7c239021ce0CAS |
[43] J. Solé, L. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids 2005 (Wiley: Hoboken, NJ).
[44] R. Reisfeld, C. K. Jorgensen, in Lasers and Excited State of Rare Earths (Eds R. Reisfeld, C. K. Jorgensen) 1977, pp. 64–122 (Springer-Verlag: New York, NY).
[45] R. Reisfeld, C. K. Jorgensen, in Handbook on the Physics and Chemistry of Rare Earth (Eds K. A. Gshneidner, J. L. Eyring) 1987, pp. 1–99 (Elsevier Scientific Publishers B. V.: New York, NY).
[46] W. T. Carnall, G. L. Goodman, K. Rajnak, R. S. Rana, J. Chem. Phys. 1989, 90, 3443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVWrsLo%3D&md5=3e6830ede2c715dc00896f10a9c6cfddCAS |
[47] B. Henderson, G. F. Imbusch, Optical Spectroscopy of Inorganic Solids 2006 (Oxford University Press: Oxford).
[48] G. Hass, J. B. Ramsey, R. Thun, J. Opt. Soc. Am. 1959, 49, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXjslOgtw%3D%3D&md5=e018caa1840e20e80c3905f994ba8beaCAS |
[49] K. Soga, W. Wang, R. E. Riman, J. B. Brown, K. R. Mikeska, J. Appl. Phys. 2003, 93, 2946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvV2rs7k%3D&md5=ffdc91d888d9a1f46b545729064dcecbCAS |
[50] M. C. Tan, G. A. Kumar, R. E. Riman, Opt. Express 2009, 17, 15904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2msr7I&md5=316eaf6630a0316c4f0e2b07e547a6b6CAS | 19724589PubMed |
[51] M. C. Tan, J. Connolly, R. E. Riman, J. Phys. Chem. C 2011, 115, 17952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGnu7%2FP&md5=ea2af6f1b6f8252eb9e2897ea060776cCAS |
[52] T. Andelman, M. C. Tan, R. E. Riman, Mater. Res. Innov. 2010, 14, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVWgsb0%3D&md5=43394f873d087b423d8d98c04fd7b060CAS |
[53] Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, R. E. Riman, J. Nanosci. Nanotechnol. 2010, 10, 1685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlCqurk%3D&md5=b36e1a6bed767288c30ee92377903be9CAS | 20355558PubMed |
[54] D. Yuan, M. C. Tan, R. E. Riman, G. M. Chow, J. Phys. Chem. C 2013, 117, 13297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFyhs7k%3D&md5=88d9dbd35fd69751f4d5e4abfb416d3cCAS |
[55] F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Nature 2010, 463, 1061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitl2hu74%3D&md5=cc12dd55697e673670b5de2eb7f91032CAS | 20182508PubMed |
[56] A. E. Nielsen, Kinetics of Precipitation 1964 (Pergamon Press: Oxford).
[57] A. G. Walton, The Formation and Properties of Precipitates 1967 (Krieger: Huntington, NY).
[58] A. Myerson, Handbook of Industrial Crystallization 2002 (Elsevier Science: Woburn, MA).
[59] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXhsFGksA%3D%3D&md5=578a5d6248205398e020184fee868b7cCAS |
[60] M. M. Lencka, R. E. Riman, Ferroelectrics 1994, 151, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFGqu7o%3D&md5=75c7983fa15e807d07bb6dc9c6fe2974CAS |
[61] M. C. Tan, L. Al-Baroudi, R. E. Riman, ACS Appl. Mater. Interfaces 2011, 3, 3910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ChtLfF&md5=834608d51dd0372d9f3b21d87c85f689CAS | 21870851PubMed |
[62] R. E. Riman, G. A. Kumar, V. Atakan, J. G. Brennan, J. Ballato, Proc. SPIE – Int. Soc. Opt. Eng. 2007, 6707, 670707/1.
| 1:CAS:528:DC%2BD2sXhtF2htLrM&md5=663b78b5f6a15cb5d3d547621564e8fbCAS |