Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Polymeric Hydrogels and Nanoparticles: A Merging and Emerging Field

Enyi Ye A and Xian Jun Loh A B
+ Author Affiliations
- Author Affiliations

A Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore.

B Corresponding author. Email: XianJun_Loh@scholars.a-star.edu.sg




Dr Enyi Ye obtained his Ph.D. in Chemistry from the National University of Singapore. He presently works as a research scientist at the Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR). His research is centred on the synthesis, properties, and applications of nanostructured materials, including semiconductors, metallics, metal oxides, luminescent lanthanide nanocrystals, and hybrid composite materials.



Dr Xian Jun Loh is Research Scientist at the Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR). He graduated with a Ph.D. from the National University of Singapore in 2009. In 2010, he was a visiting academic at the Department of Chemistry, University of Cambridge, supported by an A*STAR Fellowship. His academic achievements include 45 papers (H-index = 17), four patents filed, three book chapters and two books. His main research interests are in the design of stimuli-responsive polymers for biomedical applications, particularly hydrogel materials, and in the motivation and nurturing of aspiring young researchers.

Australian Journal of Chemistry 66(9) 997-1007 https://doi.org/10.1071/CH13168
Submitted: 10 April 2013  Accepted: 7 May 2013   Published: 31 May 2013

Abstract

Hydrogels have had extensive applications in scientific and industrial applications since their invention over 50 years ago. Responsive hydrogels based on temperature, light, and pH stimuli have been developed by changing the chemical components of the matrix structure. On the other hand, metallic nanoparticles of different shapes and sizes have been prepared by physical as well as chemical methods. These inorganic assemblies are currently widely used in the biomedical sciences and engineering fields. Recently, the combined use of hydrogels and nanoparticles in a single entity has gained enormous attention in areas such as catalysts, surface-enhanced Raman scattering, biosensors, and drug delivery. In this review, recent literature describing these technologies is summarized and an outlook on the promising future of this emerging field is provided.


References

[1]  N. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Eur. J. Pharm. Biopharm. 2000, 50, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslyju7Y%3D&md5=acf64ad556f98853316e1553f16f80d7CAS | 10840191PubMed |

[2]  O. Wichterle, D. Lim, Nature 1960, 185, 117.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) K. Y. Lee, D. J. Mooney, Prog. Polym. Sci. 2012, 37, 106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqt77L&md5=7a4ed4a0e8d3058b26c3a7e43e393839CAS | 22125349PubMed |
      (b) J. Mano, G. Silva, H. S. Azevedo, P. Malafaya, R. Sousa, S. Silva, L. Boesel, J. Oliveira, T. Santos, A. Marques, N. Neves, R. Reis, J. R. Soc. Interface 2007, 4, 999.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) W. Hennink, C. Van Nostrum, Adv. Drug Deliv. Rev. 2012, 64, 223.
      (b) M. H. Park, M. K. Joo, B. G. Choi, B. Jeong, Acc. Chem. Res. 2012, 45, 424.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D.-C. Wu, X. J. Loh, Y.-L. Wu, C. L. Lay, Y. Liu, J. Am. Chem. Soc. 2010, 132, 15140.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. J. Loh, G. R. Deen, Y. Y. Gan, L. H. Gan, J. Appl. Polym. Sci. 2001, 80, 268.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) X. J. Loh, V. P. N. Nguyen, N. Kuo, J. Li, J. Mater. Chem. 2011, 21, 2246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOisro%3D&md5=03da55d79d1e4b5efa7bb6344307adddCAS |
      (b) X. J. Loh, B. J. H. Yee, F. S. Chia, J. Biomed. Mater. Res. A 2012, 100A, 2686.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  X. J. Loh, S. H. Goh, J. Li, Biomacromolecules 2007, 8, 585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGqu7fF&md5=beae6fd1e184992e67c026efaa36d8afCAS | 17291082PubMed |

[7]  (a) E. A. Appel, X. J. Loh, S. T. Jones, F. Biedermann, C. A. Dreiss, O. A. Scherman, J. Am. Chem. Soc. 2012, 134, 11767.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1SmtL0%3D&md5=80efdacc30eb6f850fe7179f54aa71b0CAS | 22758793PubMed |
      (b) E. A. Appel, X. J. Loh, S. T. Jones, C. A. Dreiss, O. A. Scherman, Biomaterials 2012, 33, 4646.

[8]  C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109, 13857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlGgu7o%3D&md5=0341bd6f6b58e5ac78671bcdf80cfb24CAS | 16852739PubMed |

[9]  J. Gao, H. Gu, B. Xu, Acc. Chem. Res. 2009, 42, 1097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVOmtb8%3D&md5=cee1103575cb4a5e020c61ffd717e7cfCAS | 19476332PubMed |

[10]  P. Schexnailder, G. Schmidt, Colloid Polym. Sci. 2009, 287, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWrtLzO&md5=53e43c8b504eca06db84d018ad090e09CAS |

[11]  K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai, Nano Lett. 2007, 7, 3097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVChsrnP&md5=ce234291f69aa3dafcba0072caeed300CAS | 17877408PubMed |

[12]  J. Chen, B. Lim, E. P. Lee, Y. Xia, Nano Today 2009, 4, 81.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. Narayanan, M. A. El-Sayed, J. Am. Chem. Soc. 2004, 126, 7194.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlWlu7s%3D&md5=c71501df5782abadfbcc049c8f6d0e01CAS | 15186154PubMed |

[14]  T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, Langmuir 2002, 18, 4915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1egurg%3D&md5=159ec8c6a4fb4a1810d5b649875d4c13CAS |

[15]  (a) S. Cheong, J. Watt, B. Ingham, M. F. Toney, R. D. Tilley, J. Am. Chem. Soc. 2009, 131, 14590.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaqsL%2FK&md5=585dbed3ac147e775af4c8a859960a28CAS | 19754052PubMed |
      (b) J. Watt, S. Cheong, M. F. Toney, B. Ingham, J. Cookson, P. T. Bishop, R. D. Tilley, ACS Nano 2010, 4, 396.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 1996, 1924.
      (d) Z. Peng, H. Yang, Nano Today 2009, 4, 143.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Ren, R. D. Tilley, Small 2007, 3, 1508.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. Narayanan, M. A. El-Sayed, Nano Lett. 2004, 4, 1343.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. A. Mahmoud, C. E. Tabor, M. A. El-Sayed, Y. Ding, Z. L. Wang, J. Am. Chem. Soc. 2008, 130, 4590.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, Y. Xiong, J. Am. Chem. Soc. 2013, 135, 3200.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) Y. Xiong, H. Cai, Y. Yin, Y. Xia, Chem. Phys. Lett. 2007, 440, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Cheong, J. D. Watt, R. D. Tilley, Nanoscale 2010, 2, 2045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msr7I&md5=5ca78829b94904c897081ccf13802e57CAS | 20694209PubMed |

[17]  (a) Y. Xiong, Y. Xia, Adv. Mater. 2007, 19, 3385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jt7fE&md5=9d0f0b9f2023460738d27181302dcfc7CAS |
      (b) Y. Xiong, J. M. McLellan, Y. Yin, Y. Xia, Angew. Chem. 2007, 119, 804.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Teng, H. Yang, Nano Lett. 2005, 5, 885.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc. 2005, 127, 17118.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Maksimuk, S. Yang, Z. Peng, H. Yang, J. Am. Chem. Soc. 2007, 129, 8684.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) X. Teng, S. Maksimuk, S. Frommer, H. Yang, Chem. Mater. 2007, 19, 36.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. Maksimuk, X. Teng, H. Yang, J. Phys. Chem. C 2007, 111, 14312.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  E. Y. Ye, H. Tan, S. P. Li, W. Y. Fan, Angew. Chem. Int. Ed. 2006, 45, 1120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslaqtrY%3D&md5=a232d49df36284693117e06a369f0e27CAS |

[19]  C. Wang, N. T. Flynn, R. Langer, Adv. Mater. 2004, 16, 1074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKltrg%3D&md5=a47adacca7fd8833eb3bf322b31b6af7CAS |

[20]  A. Biffis, N. Orlandi, B. Corain, Adv. Mater. 2003, 15, 1551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslKjtbc%3D&md5=fed5e26be636042633de126788780682CAS |

[21]  (a) O. Ozay, N. Aktas, E. Inger, N. Sahiner, Int. J. Hydrogen Energy 2011, 36, 1998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGqsr4%3D&md5=4d223141e7ddcce09a0e1b01bda246e6CAS |
      (b) N. Sahiner, O. Ozay, E. Inger, N. Aktas, Appl. Catal. B 2011, 102, 201.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Sagbas, N. Sahiner, Int. J. Hydrogen Energy 2012, 37, 18944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFyiurjN&md5=a8e3cf2f31bfaebadb25117463fdfd1bCAS |

[23]  V. Ramtenki, V. D. Anumon, M. V. Badiger, B. L. V. Prasad, Colloids Surf. A 2012, 414, 296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WgurfL&md5=f5d663ec74b299c6dc29bec03aa08570CAS |

[24]  Y. Lu, P. Spyra, Y. Mei, M. Ballauff, A. Pich, Macromol. Chem. Phys. 2007, 208, 254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlylu7w%3D&md5=af13feb7a07c61339dbedef7cfae1d0fCAS |

[25]  C. P. Leamon, D. Weigl, R. W. Hendren, Bioconjug. Chem. 1999, 10, 947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1eqsro%3D&md5=44374f6845a52a0be6eca25cc7eed456CAS | 10563763PubMed |

[26]  (a) C. He, S. W. Kim, D. S. Lee, J. Controlled Release 2008, 127, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVeqtbg%3D&md5=7391778c05e474c2fac4b3f4bacfb7c4CAS |
         (b) J.-F. Gohy, in Block Copolymers in Nanoscience (Ed. M. Lazzari) 2008, pp. 91–116.
      (c) F. H. Meng, Z. Y. Zhong, J. Feijen, Biomacromolecules 2009, 10, 197.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Klouda, A. G. Mikos, Eur. J. Pharm. Biopharm. 2008, 68, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgtbrP&md5=4a614d6dbbb73343c3a8467b1087bf9dCAS | 17881200PubMed |

[28]  (a) X. J. Loh, W. C. D. Cheong, J. Li, Y. Ito, Soft Matter 2009, 5, 2937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVSgtrw%3D&md5=ea4b40d349fab7be0b5b97f5dfb33278CAS |
      (b) X. J. Loh, Y. L. Wu, W. T. J. Seow, M. N. I. Norimzan, Z. X. Zhang, F. J. Xu, E. T. Kang, K. G. Neoh, J. Li, Polymer 2008, 49, 5084.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. J. Loh, Z. X. Zhang, Y. L. Wu, T. S. Lee, J. Li, Macromolecules 2009, 42, 194.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. J. Loh, J. S. Gong, M. Sakuragi, T. Kitajima, M. Z. Liu, J. Li, Y. Ito, Macromol. Biosci. 2009, 9, 1069.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. J. Loh, S. H. Goh, J. Li, J. Phys. Chem. B 2009, 113, 11822.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) X. J. Loh, W. Guerin, S. M. Guillaume, J. Mater. Chem. 2012, 22, 21249.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. K. W. Lam, S. P. Armes, A. L. Lewis, S. Stolnik, J. Drug Target. 2009, 17, 512.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) D. W. Lim, Y. I. Yeom, T. G. Park, Bioconjug. Chem. 2000, 11, 688.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) X. J. Loh, J. Li, Expert Opin. Ther. Pat. 2007, 17, 965.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) X. J. Loh, Y. X. Tan, Z. Y. Li, L. S. Teo, S. H. Goh, J. Li, Biomaterials 2008, 29, 2164.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) X. J. Loh, K. K. Tan, X. Li, J. Li, Biomaterials 2006, 27, 1841.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) X. J. Loh, K. B. C. Sng, J. Li, Biomaterials 2008, 29, 3185.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) X. J. Loh, S. H. Goh, J. Li, Biomaterials 2007, 28, 4113.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) Z. Li, Z. Zhang, K. L. Liu, X. Ni, J. Li, Biomacromolecules 2012, 13, 3977.

[29]  (a) D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Angew. Chem. Int. Ed. 2010, 49, 3280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1GlsbY%3D&md5=9cc6ce72ce78cbda55e86cf911053d0bCAS |
      (b) F. Kim, S. Connor, H. Song, T. Kuykendall, P. D. Yang, Angew. Chem. Int. Ed. 2004, 43, 3673.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Grzelczak, J. Perez-Juste, P. Mulvaney, L. M. Liz-Marzan, Chem. Soc. Rev. 2008, 37, 1783.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, F. J. G. de Abajo, Chem. Soc. Rev. 2008, 37, 1792.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) E. Roduner, Chem. Soc. Rev. 2006, 35, 583.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) C.-C. Chang, H.-L. Wu, C.-H. Kuo, M. H. Huang, Chem. Mater. 2008, 20, 7570.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) P.-J. Chung, L.-M. Lyu, M. H. Huang, Chem. – Eur. J. 2011, 17, 9746.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) H.-L. Wu, H.-R. Tsai, Y.-T. Hung, K.-U. Lao, C.-W. Liao, P.-J. Chung, J.-S. Huang, I-C. Chen, M. H. Huang, Inorg. Chem. 2011, 50, 8106.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) S. Tripathy, R. Marty, V. K. Lin, S. L. Teo, E. Ye, A. Arbouet, L. Saviot, C. Girard, M. Y. Han, A. Mlayah, Nano Lett. 2011, 11, 431.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) Y. G. Sun, Y. N. Xia, Science 2002, 298, 2176.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) E. Y. Ye, S. Y. Zhang, S. H. Liu, M. Y. Han, Chem. –Eur. J. 2011, 17, 3074.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayad, Plasmonics 2007, 2, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yitr3L&md5=4b308f76d574b7ce41453bc280594714CAS |

[31]  (a) M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, Y. Xia, Nat. Mater. 2009, 8, 935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGlt7rF&md5=f8a749b621e04a15ff512186aa62d4daCAS | 19881498PubMed |
      (b) M. A. El-Sayed, Acc. Chem. Res. 2001, 34, 257.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Adv. Mater. 2007, 19, 3177.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  (a) P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlWgtrY%3D&md5=c1e2f900e0d60ceb5855d2b3ca5855d3CAS | 18447366PubMed |
      (b) S. Link, M. Mohamed, M. El-Sayed, J. Phys. Chem. B 1999, 103, 3073.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. R. Jana, L. Gearheart, C. J. Murphy, J. Phys. Chem. B 2001, 105, 4065.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, X. Li, Opt. Lett. 2005, 30, 3048.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) B. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. Link, M. A. El-Sayed, Int. Rev. Phys. Chem. 2000, 19, 409.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marqueze, Y. Xia, Chem. Soc. Rev. 2006, 35, 1084.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFCltQ%3D%3D&md5=aa8bcaaaafd2e0be9177d6d1983a441aCAS |

[34]  (a) C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 2002, 12, 1765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFWjsLk%3D&md5=f134e525cd2ce457c4a285374ec4cfa8CAS |
      (b) R. D. Averitt, S. L. Westcott, N. J. Halas, J. Opt. Soc. Am. B 1999, 16, 1824.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Hirsch, J. Jackson, A. Lee, N. Halas, J. West, Anal. Chem. 2003, 75, 2377.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, Cancer Lett. 2004, 209, 171.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. Gou, C. J. Murphy, Chem. Mater. 2005, 17, 3668.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Gole, C. J. Murphy, Chem. Mater. 2004, 16, 3633.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) C. Loo, A. Lowery, N. J. Halas, J. West, R. Drezek, Nano Lett. 2005, 5, 709.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) B. D. Busbee, S. O. Obare, C. J. Murphy, Adv. Mater. 2003, 15, 414.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. J. Oldenburg, J. B. Jackson, S. L. Westcott, N. Halas, Appl. Phys. Lett. 1999, 75, 2897.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Proc. Natl. Acad. Sci. USA 2003, 100, 13549.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  (a) A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Technol. Cancer Res. Treat. 2004, 3, 33.
         | 14750891PubMed |
      (b) C. Loo, L. Hirsch, M.-H. Lee, E. Chang, J. West, N. Halas, R. Drezek, Opt. Lett. 2005, 30, 1012.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, Angew. Chem. Int. Ed. 2008, 47, 3588.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Ren, R. D. Tilley, J. Am. Chem. Soc. 2007, 129, 3287.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett. 2007, 7, 1318.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia, Acc. Chem. Res. 2012, 41, 8035.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) C. Wang, L. Wang, R. Long, L. Ma, L. Wang, Z. Li, Y. Xiong, J. Mater. Chem. 2012, 22, 8195.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. Chen, F. Saeki, J. Benjamin, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, Nano Lett. 2005, 5, 473.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, Y. Xia, Acc. Chem. Res. 2008, 41, 1587.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  E. Ye, K. Y. Win, H. R. Tan, M. Lin, C. P. Teng, A. Mlayah, M. Y. Han, J. Am. Chem. Soc. 2011, 133, 8506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Ght70%3D&md5=ceca52d0229c1d013ef0f709079cb79dCAS | 21563806PubMed |

[37]  S. Sershen, S. Westcott, N. Halas, J. West, J. Biomed. Mater. Res. 2000, 51, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslagsbY%3D&md5=15b0e22a2d59503aa5e4fd0c86d5feeeCAS | 10880069PubMed |

[38]  B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, Y. Zhao, J. Am. Chem. Soc. 2012, 134, 16558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWmsLjJ&md5=3e5f092b60d32d62ceb9cb58124c76eeCAS | 23013429PubMed |

[39]  (a) E. Ye, B. Liu, W. Y. Fan, Chem. Mater. 2007, 19, 3845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFWjt78%3D&md5=a2207bfb02679e3d1a186e376d22d96aCAS |
      (b) F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Science 2004, 303, 821.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 2000, 122, 8581.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. Dumestre, B. Chaudret, C. Amiens, M. C. Fromen, M. J. Casanove, P. Renaud, P. Zurcher, Angew. Chem. 2002, 114, 4462.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, B. Chaudret, Nano Lett. 2001, 1, 565.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Scariot, D. O. Silva, J. D. Scholten, G. Machado, S. R. Teixeira, M. A. Novak, G. Ebeling, J. Dupont, Angew. Chem. 2008, 120, 9215.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) D.-H. Chen, S.-H. Wu, Chem. Mater. 2000, 12, 1354.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  (a) C. G. Hadjipanayis, M. J. Bonder, S. Balakrishnan, X. Wang, H. Mao, G. C. Hadjipanayis, Small 2008, 4, 1925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKitbrI&md5=bd10388163cb56f8f083741a72cc6195CAS | 18752211PubMed |
      (b) L.-S. Bouchard, M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, L.-S. Bouchard, M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, Proc. Natl. Acad. Sci. USA 2009, 106, 4085.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. A. Pankhurst, J. Connolly, S. Jones, J. Dobson, J. Phys. D Appl. Phys. 2003, 36, R167.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 2005, 100, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  T. Hoare, J. Santamaria, G. F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D. S. Kohane, Nano Lett. 2009, 9, 3651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2murrJ&md5=5c79d11d501727eb1d23c878541739e8CAS | 19736912PubMed |

[42]  J. M. Benns, R. I. Mahato, S. W. Kim, J. Controlled Release 2002, 79, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSlsbw%3D&md5=90059daebaf81699c944791954c50423CAS |

[43]  H. Hezaveh, I. I. Muhamad, Carbohydr. Polym. 2012, 89, 138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFyitr0%3D&md5=ad5b3a59059e815c006a91f77b744fddCAS |

[44]  R. Messing, A. M. Schmidt, Polym. Chem. 2011, 2, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVOgsw%3D%3D&md5=f4b158088390270d1148ccc6bd5402e6CAS |

[45]  L. E. Strong, J. L. West, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2011, 3, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFynsbs%3D&md5=decfd77d8791e67e2f1bc4622ff85f43CAS | 21384563PubMed |

[46]  Y. Wang, A. Dong, Z. Yuan, D. Chen, Colloids Surf. A 2012, 415, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslantbbP&md5=9a633187fab2646e677ea592f3d5f4bfCAS |

[47]  (a) A. Guiseppi-Elie, Biomaterials 2010, 31, 2701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yisrg%3D&md5=8a54259f69a98a80f93b885a0122ed83CAS | 20060580PubMed |
      (b) J. Kim, C. Basavaraja, T. Yamaguchi, D. Huh, Polym. Bull. 2013, 70, 207.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  Y. Xiang, D. Chen, Eur. Polym. J. 2007, 43, 4178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSiu7jO&md5=87218ff0f3a52e852ed0abe7f0ca300cCAS |

[49]  E. Tian, J. Wang, Y. Zheng, Y. Song, L. Jiang, D. Zhu, J. Mater. Chem. 2008, 18, 1116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKgtL8%3D&md5=33ecb3f678d4e7cd2dd463687ceee32eCAS |

[50]  C. Yang, H. Li, S. H. Goh, J. Li, Biomaterials 2007, 28, 3245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks12itLc%3D&md5=b044900e5c13027bd1b3532736c7f42bCAS | 17466370PubMed |

[51]  R. J. Lee, P. S. Low, J. Biol. Chem. 1994, 269, 3198.
         | 1:CAS:528:DyaK2cXhsVeqsbk%3D&md5=5e24210412f5fe8132ef1e31bd958bf5CAS | 8106354PubMed |

[52]  K. Juby, C. Dwivedi, M. Kumar, S. Kota, H. Misra, P. Bajaj, Carbohydr. Polym. 2012, 89, 906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslKqs7w%3D&md5=77e4a1e2d64ca5de314ef4c01e63ccd4CAS |

[53]  S. Ravindra, A. F. Mulaba-Bafubiandi, V. Rajinikanth, K. Varaprasad, N. Narayana Reddy, K. Mohana Raju, J. Inorg. Organomet. P. 2012, 22, 1254.
         | 1:CAS:528:DC%2BC38XhsFamt7%2FL&md5=afc23cc05f63bf641d13136164bdbfd4CAS |

[54]  N. Kojic, E. M. Pritchard, H. Tao, M. A. Brenckle, J. P. Mondia, B. Panilaitis, F. Omenetto, D. L. Kaplan, Adv. Funct. Mater. 2012, 22, 3793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Wltr4%3D&md5=c53dc4e23cc7dd1313000cb226c12b7bCAS |

[55]  (a) R. Kötitz, W. Weitschies, L. Trahms, W. Brewer, W. Semmler, J. Magn. Magn. Mater. 1999, 194, 62.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Kötitz, W. Weitschies, L. Trahms, W. Semmler, J. Magn. Magn. Mater. 1999, 201, 102.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  E. Heim, S. Harling, F. Ludwig, H. Menzel, M. Schilling, J. Phys. Condens. Matter 2008, 20, 204106.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnisFajsg%3D%3D&md5=2ff0e176cde5af6e1fcf4d46542a8c8dCAS | 21694236PubMed |

[57]  (a) Y. Chemla, H. Grossman, Y. Poon, R. McDermott, R. Stevens, M. Alper, J. Clarke, Proc. Natl. Acad. Sci. USA 2000, 97, 14268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVCmtA%3D%3D&md5=b65c1c50988b7dd7dbab2e92789b531cCAS | 11121032PubMed |
      (b) K. Enpuku, M. Hotta, A. Nakahodo, Physica C 2001, 357–360, 1462.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  C. Lofrumento, M. Ricci, E. Platania, M. Becucci, E. Castellucci, J. Raman Spectrosc. 2013, 44, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSgtrfK&md5=004e829efd5882c79099c3246975c79dCAS |

[59]  K. Shin, K. Ryu, H. Lee, K. Kim, H. Chung, D. Sohn, Analyst 2013, 138, 932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGrsA%3D%3D&md5=41da83080d6c39d733fdb401a2168dc7CAS | 23232290PubMed |

[60]  P. Aldeanueva-Potel, E. Faoucher, R. N. A. Alvarez-Puebla, L. M. Liz-Marzán, M. Brust, Anal. Chem. 2009, 81, 9233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OktbnL&md5=f71e4438fa4375ec3f4219a05680e29dCAS | 19839573PubMed |

[61]  J.-H. Kim, B. W. Boote, J. A. Pham, J. Hu, H. Byun, Nanotechnology 2012, 23, 275606.
         | Crossref | GoogleScholarGoogle Scholar | 22710608PubMed |

[62]  (a) M. Leona, P. Decuzzi, T. A. Kubic, G. Gates, J. R. Lombardi, Anal. Chem. 2011, 83, 3990.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVKqsL8%3D&md5=7ccfea026c62e4f723f29a434e39eb3aCAS | 21524144PubMed |
      (b) S. O. Pour, S. E. J. Bell, E. W. Blanch, Chem. Commun. 2011, 47, 4754.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Miljanić, L. Frkanec, T. Biljan, Z. Meić, M. Žinić, Langmuir 2006, 22, 9079.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  S. Miljanić, L. Frkanec, T. Biljan, Z. Meić, M. Žinić, J. Raman Spectrosc. 2008, 39, 1799.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  M. Keating, Y. Chen, I. A. Larmour, K. Faulds, D. Graham, Meas. Sci. Technol. 2012, 23, 084006.
         | Crossref | GoogleScholarGoogle Scholar |