Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Novel Biaryl Derivatives of Sesamol (5-Benzodioxolol) and Evaluation of their Antioxidant Activity Against DPPH Radical

Sergio A. Rodríguez A B , Mónica A. Nazareno B C and María T. Baumgartner A C
+ Author Affiliations
- Author Affiliations

A Instituto de Investigaciones en Fisicoquímica de Córdoba – CONICET, Departamento Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.

B Centro de Investigación y Transferencia de Santiago del Estero – CONICET, Instituto de Ciencias Químicas, Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Avenida Belgrano (S) 1912, 4200, Santiago del Estero, Argentina.

C Corresponding authors. Email: manazar2004@yahoo.com; tere@fcq.unc.edu.ar

Australian Journal of Chemistry 66(11) 1334-1341 https://doi.org/10.1071/CH13108
Submitted: 6 March 2013  Accepted: 22 June 2013   Published: 7 August 2013

Abstract

A simple and direct arylation of sesamol with aryl halides by a photoinduced reaction is reported. Five 6-arylsesamol derivatives were synthesized in order to evaluate possible changes in their antioxidant properties as a function of the C6 aryl substituent nature. Extension of the procedure to the reaction with o-dihalobenzenes leads to the synthesis of ring-closure products bearing a tetracyclic aromatic condensed ring system, although in lower overall yields (~45 %). The antioxidant activity of the synthetic derivatives towards 1,1-diphenyl-2-picrylhydrazyl radical was determined taking sesamol as the reference compound. In addition, the relationship between the antiradical activities of these molecules against this radical and the bond dissociation energies of their phenolic O–H group was calculated using computational chemistry methods.


References

[1]  R. Joshi, M. S. Kumar, K. Satyamoorthy, M. K. Unnikrisnan, T. Mukherjee, J. Agric. Food Chem. 2005, 53, 2696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVCksbs%3D&md5=a0a2593350d93f178a053c3ef1d5adf3CAS | 15796613PubMed |

[2]  S. Ramachandran, N. Prasad, S. Karthikeyan, Arch. Dermatol. Res. 2010, 302, 733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOrtLvM&md5=6d5a79a62622df7c88e55c9863ce66caCAS | 20697726PubMed |

[3]  G. J. Kapadia, M. A. Azuine, H. Tokuda, M. Takahashi, T. Mukainaka, T. Konoshima, H. Nishino, Pharmacol. Res. 2002, 45, 499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVSjs7s%3D&md5=207c81d8bcccf71f1a9cce497ad79979CAS | 12162952PubMed |

[4]  I. P. Kaur, A. Sani, Mutat. Res. 2000, 470, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlKjt7k%3D&md5=641aab524ff42e18784ab8855758e3ceCAS | 10986476PubMed |

[5]  D. Z. Hsu, S. P. Chien, K. T. Chen, M. Y. Liu, Shock 2007, 28, 596.
         | 1:CAS:528:DC%2BD2sXhtlSqurnK&md5=c189e0827a631f8e39518829139241c1CAS | 17589387PubMed |

[6]  T. Geetha, B. Rohit, K. Pal, Med. Chem. 2009, 5, 367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKgs7s%3D&md5=79d82ddc489c300d1f5ef887395beeb3CAS | 19689394PubMed |

[7]  J. E. Hayes, P. Allen, N. Brunton, M. N. O’Grady, J. P. Kerry, Food Chem. 2011, 126, 948. and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVKjuw%3D%3D&md5=f8d3cbb4a8ea22e64b73195d79beab96CAS |

[8]  N. Erkan, G. Ayranci, E. Ayranci, Food Chem. 2008, 110, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Olt7s%3D&md5=a83da9490da3586b9ad163143f723f7bCAS |

[9]     (a) R. A. Rossi, A. B. Peñéñory, A. B. Pierini, The Chemistry of Functional Groups, Supplement D2 (Eds S. Patai and Z. Rappoport) 1995, Ch. 24. P. 1395 (John Wiley & Sons: Chichester).
      (b) R. A. Rossi, A. B. Peñéñory, A. B. Pierini, Chem. Rev. 2003, 103, 71.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) A. B. Pierini, A. B. Peñéñory, M. T. Baumgartner, Electron Transfer Reactions in Organic Synthesis. (Ed. P. Vanelle) 2002, p. 63 (Research Signpost: Kerala).

[10]  (a) T. C. Tempesti, A. B. Pierini, M. T. Baumgartner, J. Org. Chem. 2005, 70, 6508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWiu7w%3D&md5=bd578d45c217c4f7edc36cbe59742c70CAS | 16050719PubMed |
         (b) R. A. Rossi, M. T. Baumgartner, Targets in Heterocyclic Systems: Chemistry and Properties; (Eds O. A. Attanasi, D. Spinelli) 1999, Vol. 3, Ch. 7, p. 215. (Societá Chimica Itliana: Rome).

[11]  M.T. Baumgartner, T.C. Tempesti, A.B. Pierini, Arkivoc 2003, 2003, 420.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. A. Rodríguez, M. T. Baumgartner, Tetrahedron Lett. 2010, 51, 5322.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. A. Rodríguez, M. A. Nazareno, M. T. Baumgartner, Bioorg. Med. Chem. 2011, 19, 6233.
         | Crossref | GoogleScholarGoogle Scholar | 21964183PubMed |

[14]  (a) For examples, see: S. Jinno, T. Okita, K. Inouye, Bioorg. Med. Chem. Lett. 1999, 9, 1029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFGqtrk%3D&md5=7e13db25e70c97940658273c92b93555CAS | 10230633PubMed |
      (b) Z. Novák, G. Timari, A. Kotschy, Tetrahedron 2003, 59, 7509.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Aslam, P. Stevenson, S. Phythian, D. Hall, Tetrahedron 2006, 62, 4214.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Masuda, A. Fujimoto, Y. Oyama, M. Tomomi, Y. Sone, Tetrahedron Lett. 2009, 50, 3905.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Chowdhury, M. Chafeev, S. Liu, J. Sun, V. Raina, R. Chui, W. Young, R. Kwan, J. Fu, J. Cadieux, Bioorg. Med. Chem. Lett. 2011, 21, 3676.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. Waldvogel, B. Elsler, Electrochim. Acta 2012, 82, 434.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  The concentration of reactants, the relationship 1:2 base: ratios and the times of reaction are those generally used in reactions of hydroxyaryls with aryl halides. See refs [9], [11] and [12].

[16]  For regioselectivity of the coupling between aryl radicals and arylhydroxy anions, see M. T. Baumgartner, G. A. Blanco, A. B. Pierini, New J. Chem. 2008, 32, 464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKlur4%3D&md5=78d4a69e759946eedb3d471b50537e2cCAS |

[17]  J. S. Yadav, B. V. Subba Reddy, New J. Chem. 2000, 24, 489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlGjsL8%3D&md5=74cb291afc0c1a02635877eda7d027b3CAS |

[18]  L. K. MacDonald-Wicks, L. G. Wood, M. L. Garg, J. Sci. Food Agric. 2006, 86, 2046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFajsrzN&md5=711c86018eeca3c66ecbca5d7ee6b24bCAS |

[19]  P. Kanimozhi, N. R. Prasad, Environ. Toxicol. Pharmacol. 2009, 28, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslejsrc%3D&md5=f9b20488f25c53da58abf9a6acf6b69cCAS | 21784002PubMed |

[20]  (a) K. Suja, A. Jayalekshmy, C. Arumughan, J. Sci. Food Agric. 2005, 85, 1779.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVaqs7g%3D&md5=1270ecd24e1f5ea7b53fa0ed1d7d90c6CAS |
      (b) T. Geetha, B. Rohit, K. Pal, Med. Chem. 2009, 5, 367.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Mishra, H. Ojha, N. Chaudhury, Food Chem. 2012, 130, 1036.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  G. Litwinienko, K. Ingold, J. Org. Chem. 2003, 68, 3433.and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFWhu7s%3D&md5=5fad3bab3c3f7b2e8882af6e11d29210CAS | 12713343PubMed |

[22]  (a) M. Foti, C. Daquino, C. Geraci, J. Org. Chem. 2004, 69, 2309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFyhsbs%3D&md5=00fe9e17b589004fadc4e584b92170cbCAS | 15049623PubMed |
      (b) G. Litwinienko, K. Ingold, J. Org. Chem. 2004, 69, 5888.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Addition of small quantities of acetic acid did not cause any appreciable decay of DPPH within the reaction time.

[24]  J. S. Wright, E. R. Johnson, G. A. DiLabio, J. Am. Chem. Soc. 2001, 123, 1173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlGluw%3D%3D&md5=dbf50a0d7676a6927581cefbaa655f63CAS | 11456671PubMed |

[25]  ΔHf(ArO) is the enthalpy of formation of the radical of sesamol generated after H abstraction, ΔHf(H) is the enthalpy of formation of the hydrogen atom, and ΔHf(ArOH) is the enthalpy of formation of the antioxidant molecule.

[26]  The BDE of phenol calculated by the above method is 87.57 kcal mol–1, which is close to the ‘best’ experimental value of 87.30 kcal mol–1 in the gas phase.

[27]  (a) E. Klein, V. Lukes, M. Ilcˇin, Chem. Phys. 2007, 336, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFens7o%3D&md5=d9e48d5dd91fdfaed239979156d6d089CAS |
      (b) E. Klein, V. Lukes, J. Mol. Struct. THEOCHEM 2006, 767, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  The solvent effect was modelled with Tomasi’s polarized continuum model (PCM) (S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys.1981, 55, 117; S. Miertus, J. Tomasi, Chem. Phys. 1982, 65, 239; M. Cossi, B. Barone, R. Camini, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327). The solvent effect was evaluated from single-point PCM calculations on the gas-phase optimized geometries at the B3LYP/6–31G* theory level, electrostatic and non-electrostatic contributions being considered. In the PCM model, the solvent is represented as a polarizable continuum (with dielectric constant ϵ) surrounding the molecular complex at an interface constructed by combining atomic van der Waal radii with the effective probe radius of the solvent. Charges are allowed to develop on this interface according to the electrostatic potential of the solute and ϵ, then the polarized reaction field of the solvent is taken into account in the quantum mechanical description of the solute. The wave function of the complex is relaxed self-consistently with the reaction field to solve the Poisson–Boltzmann (PB) equations. Solvent was represented with the following parameters: dielectric constant and probe radius.

[29]  J. Rimarcik, V. Lukeš, E. Klein, M. Ilcin, J. Mol. Struct. (THEOCHEM) 2010, 952, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFymtLo%3D&md5=e4ed213a593bf11bcb73ca721bc947e7CAS |

[30]  D. Huang, B. Ou, R. Prior, J. Agric. Food Chem. 2005, 53, 1841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslaltLo%3D&md5=382883ffc32e9591c2a2c26f70685537CAS | 15769103PubMed |

[31]  M. Najað, M. Najað, H. Najað, Can. J. Chem. 2012, 90, 915. In the suplementary material, we present the analysis of the differences between the calculations in this work and those reported.

[32]  W. Brand-Williams, M. E. Cuvelier, C. Berset, Lebensmittel–Wissenschaft und Technologie 1995, 28, 25.
         | 1:CAS:528:DyaK2MXjvV2itLw%3D&md5=a355ce4dc5eea967ff78d7b6202c1e96CAS |

[33]  S. Burda, W. Oleszek, J. Agric. Food Chem. 2001, 49, 2774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVOgsr0%3D&md5=c25bea7bad5e09a51d01101c8140ab4dCAS | 11409965PubMed |

[34]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.01 2009 (Gaussian, Inc.: Wallingford, CT).

[35]  (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, B37, 785.
      (b) A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
         | Crossref | GoogleScholarGoogle Scholar |