Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Syntheses, Photoluminescent Properties, and Structural Investigation of Five Complexes based on a New T-Shaped 2-(Pyridin-3-yl)-4,6-Pyrimidine Dicarboxylic Acid Ligand: Structure Evolution from One-dimensional Chains to Three-dimensional Architectures

Dongsheng Deng A , Guohui Kang C , Baoming Ji A D , Hongliang Li A B , Guirong Qu B , Xuesen Fan B , Chuansheng Ruan C , Tiesheng Li C and Mincan Wang C
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China.

B College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, China.

C Department of Chemistry, Zhengzhou University, Zhengzhou 450052, China.

D Corresponding author. Email: lyhxxjbm@126.com

Australian Journal of Chemistry 66(11) 1342-1351 https://doi.org/10.1071/CH13163
Submitted: 7 April 2013  Accepted: 23 June 2013   Published: 26 July 2013

Abstract

A series of structurally diverse coordination polymers, [Mn(ppmdc)(H2O)2]n (1), [Cu(ppmdc)(H2O)2]n (2), {[Co(ppmdc)][Co(ppmdc)(H2O)]}n (3), [Zn(ppmdc)(H2O)]n (4), and [Cd(ppmdc)]n (5) (H2ppmdc = 2-(pyridin-3-yl)-4,6-pyrimidine dicarboxylic acid) were obtained from metal salts and H2ppmdc under hydrothermal conditions. Single crystal X-ray structural analysis reveals that complexes 15 have different structures, ranging from one- to three-dimensions, which are mainly due to the different metal ions, and especially the coordination mode of the H2ppmdc ligand. Complexes 1 and 2 are 1D coordination polymers, in which the ppmdc2– ligand adopts a bis-(bidentate) mode to link metal ions. Complexes 3 and 4 feature a 2D metal-organic framework with Schläfli topologies of (4.62) (42.62.82) and (4.82), respectively, in which the metal ions are bridged by μ3-ppmdc2– ligands. Complex 5 possesses a 3D nanotubular metal-organic framework with a point symbol of (49.66) topology built up from the 6-connected ppmdc2– ligands and Cd(ii) ions. The thermal properties of complexes 15 have been determined. Moreover, investigation of photoluminescent properties reveals that the configuration of ppmdc2– resulting from metal-directed coordination has a profound effect on the fluorescence emissions of complexes 4 and 5.


References

[1]  (a) M. Maes, L. Alaerts, F. Vermoortele, R. Ameloot, S. Couck, V. Finsy, J. F. M. Denayer, D. E. De Vos, J. Am. Chem. Soc. 2010, 132, 2284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgtL4%3D&md5=3ee18a6c9b9dcc9f882571e658657131CAS | 20121122PubMed |
      (b) N. R. Kelly, S. Goetz, S. R. Batten, P. E. Kruger, CrystEngComm 2008, 10, 68.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-K. Cheng, Y.-G. Yao, J. Zhang, Z.-J. Li, Z.-W. Cai, X.-Y. Zhang, Z.-N. Chen, Y.-B. Chen, Y. Kang, Y.-Y. Qin, Y.-H. Wen, J. Am. Chem. Soc. 2004, 126, 7796.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) J. R. Li, J. L. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OnsbbL&md5=66e0b0302e11a5248b9aaafb8405e444CAS | 21978134PubMed |
      (b) Z. Z. Lu, R. Zhang, Y. Z. Li, Z. J. Guo, H. G. Zheng, Chem. Commun. 2011, 47, 2919.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. H. Liu, D. H. Liu, Q. Y. Yang, C. L. Zhong, J. G. Mi, Ind. Eng. Chem. Res. 2010, 49, 2902.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Q. Ma, C. Abney, W. B. Lin, Chem. Soc. Rev. 2009, 38, 1248.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) S. R. Batten, CrystEngComm 2001, 3, 67.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J.-S. Hu, Y.-J. Shang, X.-Q. Yao, L. Qin, Y.-Z. Li, Z.-J. Guo, H.-G. Zheng, Z.-L. Xue, Cryst. Growth Des. 2010, 10, 2676.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. J. Garibay, Z. Q. Wang, K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2009, 48, 7341.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) F. H. Zhao, S. Jing, Y. X. Che, J. M. Zheng, CrystEngComm 2012, 14, 4478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1ertrs%3D&md5=e07a8841c7101cfe43690b2ccdfedf9aCAS |
      (b) J. X. Yang, X. Zhang, J. K. Cheng, J. Zhang, Y. G. Yao, Cryst. Growth Des. 2012, 12, 333.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. P. Li, M. Du, Chem. Commun. 2011, 47, 5958.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. M. Ji, D. S. Deng, H. H. Lan, C. X. Du, S. L. Pan, B. Liu, Cryst. Growth Des. 2010, 10, 2851.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) X. He, X. P. Lu, Z. F. Ju, C. J. Li, Q. K. Zhang, M. X. Li, CrystEngComm 2013, 15, 2731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslKgsLw%3D&md5=3e04ca408aec6aa9d3073ca2997ce0eeCAS |
      (b) B. M. Ji, D. S. Deng, X. He, B. Liu, S. B. Miao, N. Ma, W. Z. Wang, L. G. Ji, P. Liu, X. F. Li, Inorg. Chem. 2012, 51, 2170.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. F. Liu, J. Liu, C. B. Tian, M. N. Cao, Z. J. Lin, R. Cao, Inorg. Chem. 2011, 50, 2264.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z.-L. Chen, C.-F. Jiang, W.-H. Yan, F.-P. Liang, S. R. Batten, Inorg. Chem. 2009, 48, 4674.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) B. Mu, F. Li, K. S. Walton, Chem. Commun. 2009, 2493.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) Z. G. Gu, Y. T. Liu, X. J. Hong, Q. G. Zhan, Z. P. Zheng, S. R. Zheng, W. S. Li, S. J. Hu, Y. P. Cai, Cryst. Growth Des. 2012, 12, 2178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkslaks74%3D&md5=416b09e82b66f6303432f499962bddfeCAS |
      (b) D. S. Deng, P. Liu, W. J. Fu, L. L. F. X. Yang, B. M. Ji, Inorg. Chim. Acta 2010, 363, 891.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Zhao, H. L. Guo, X. L. Cheng, P. Cheng, W. Shi, D. Z. Liao, S. P. Yan, Z. H. Jiang, Chem. Eur. J. 2006, 12, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) F. Q. Wang, X. J. Zheng, Y. H. Wang, K. Z. Wang, L. P. Jin, Polyhedron 2008, 27, 717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFamsg%3D%3D&md5=d2d33967184655291d21fec917915f35CAS |
      (b) L. Hou, W.-X. Zhang, J.-P. Zhang, W. Xue, Y.-B. Zhang, X.-M. Chen, Chem. Commun. 2010, 46, 6311.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Hou, B. Liu, L.-N. Jia, L. Wei, Y.-Y. Wang, Q.-Z. Shi, Cryst. Growth Des. 2013, 13, 701.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) W. Y. Wang, Z. L. Yang, C. J. Wang, H. J. Lu, S. Q. Zang, G. Li, CrystEngComm 2011, 13, 4895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslKjsrg%3D&md5=6f7b3ae8794d258b20d2281ecd57421aCAS |
      (b) X. Li, B.-L. Wu, C.-Y. Niu, Y.-Y. Niu, H.-Y. Zhang, Cryst. Growth Des. 2009, 9, 3423.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. L. Cai, S. R. Zheng, Z. Z. Wen, J. Fan, W. G. Zhang, Cryst. Growth Des. 2012, 12, 2355.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Hou, L.-N. Jia, W.-J. Shi, Y.-Y. Wang, B. Liu, Q.-Z. Shi, Dalton Trans. 2013, 42, 3653.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) G. Beobide, O. Castillo, A. Luque, U. García-Couceiro, J. P. García-Terán, P. Román, Dalton Trans. 2007, 2669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFOis7Y%3D&md5=f15445cd4048859109bd7faafead03b9CAS | 17576492PubMed |
      (b) G. Beobide, W. G. Wang, O. Castillo, A. Luque, P. Román, G. Tagliabue, S. Galli, J. A. R. Navarro, Inorg. Chem. 2008, 47, 5267.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) J. Cepeda, R. Balda, G. Beobide, O. Castillo, J. Fernández, A. Luque, S. Pérez-Yáñez, P. Román, D. Vallejo-Sánchez, Inorg. Chem. 2011, 50, 8437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVOhtbc%3D&md5=305e68e3cc27e27ec5a17a804b256c76CAS | 21800833PubMed |
      (b) J. Cepeda, R. Balda, G. Beobide, O. Castillo, J. Fernández, A. Luque, S. Pérez-Yáñez, P. Román, D. Vallejo-Sánchez, Inorg. Chem. 2012, 51, 7875.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  U. W. Grummt, E. Birckner, E. Klemm, D. A. M. Egbe, B. Heise, J. Phys. Org. Chem. 2000, 13, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlGhsbc%3D&md5=37f9e13f5f5e5d7a62f356dcfb3cfa0fCAS |

[12]  (a) F. W. Zhang, Z. F. Li, T. Z. Ge, H. C. Yao, G. Li, H. J. Lu, Y. Y. Zhu, Inorg. Chem. 2010, 49, 3776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Sqsro%3D&md5=40d1b6bdc0a1f3a6dd5a928b07a21163CAS |
      (b) H. Y. Chen, D. R. Xiao, J. H. He, Z. F. Li, G. J. Zhang, D. Z. Sun, R. Yuan, E. B. Wang, Q. L. Luo, CrystEngComm 2011, 13, 4988.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. J. Wang, T. Wang, L. Li, B. B. Guo, Y. Zhang, Z. F. Xiong, G. Li, Dalton Trans. 2013, 42, 1715.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) R.-R. Zeng, Q.-G. Zhai, S.-Ni Li, Y.-C. Jiang, M.-C. Hu, CrystEngComm 2011, 13, 4823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslGqtL0%3D&md5=641a225cb9da33a3e71374a0f18031e8CAS |
      (b) A. Recio, J. Server-Carrió, E. Escrivà, R. Acerete, J. García-Lozano, A. Sancho, L. Soto, Cryst. Growth Des. 2008, 8, 4075.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. J. O’Reilly, G. Smith, C. H. L. Kennard, A. H. White, Aust. J. Chem. 1983, 36, 183.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X.-H. Bu, W. Chen, S.-L. Lu, R.-H. Zhang, D.-Z. Liao, W.-M. Bu, M. Shionoya, F. Brisse, J. Ribas, Angew. Chem. Int. Ed. 2001, 40, 3201.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S.-M. Zhang, Z. Chang, T.-L. Hu, X.-H. Bu, Inorg. Chem. 2010, 49, 11581.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) Y. Bu, F. L. Jiang, S. Q. Zhang, J. Ma, X. J. Li, M. C. Hong, CrystEngComm 2011, 13, 6323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gurrP&md5=c0c0c17147a144fda7620bba080e8512CAS |
      (b) D. Niu, J. Yang, J. Guo, W. Q. Kan, S. Y. Song, P. Du, J. F. Ma, Cryst. Growth Des. 2012, 12, 2397.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) R. R. Zeng, Q. G. Zhai, S. N. Li, Y. C. Jiang, M. C. Hou, CrystEngComm 2011, 13, 4823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslGqtL0%3D&md5=641a225cb9da33a3e71374a0f18031e8CAS |
      (b) L. Valencia, P. Pérez-Lourido, R. Bastida, A. Macías, Cryst. Growth Des. 2008, 8, 2080.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-R. Li, Y. Tao, Q. Yu, X.-H. Bu, H. Sakamoto, S. Kitagawa, Chem. – Eur. J. 2008, 14, 2771.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J.-R. Li, Y. Tao, Q. Yu, X.-H. Bu, Chem. Commun. 2007, 1527.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) X. Li, Y. Bing, M. Q. Zha, Y. X. Liang, J. G. Pan, D. J. Wang, CrystEngComm 2011, 13, 6373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gurvK&md5=008bc7a6cbe8075cf3efbd4156e7be8cCAS |
      (b) W. G. Lu, L. Jiang, X. L. Feng, T. B. Lu, Cryst. Growth Des. 2008, 8, 986.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Q. Kan, B. Liu, J. Yang, Y. Y. Liu, J. F. Ma, Cryst. Growth Des. 2012, 12, 2288.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=7ef7d36c64ac20944777b8342be85945CAS |
         (b) A. L. Speck, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2005.

[18]  (a) R.-Q. Fang, X.-M. Zhang, Inorg. Chem. 2006, 45, 4801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWit7o%3D&md5=4ba983df05629308aa55b12b02c5fd7fCAS | 16749845PubMed |
      (b) B.-L. Wu, D.-Q. Yuan, F.-L. Jiang, R.-H. Wang, L. Han, Y.-F. Zhou, M.-C. Hong, Eur. J. Inorg. Chem. 2004, 2695.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) S.-L. Zheng, X.-M. Chen, Aust. J. Chem. 2004, 57, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsFSksr8%3D&md5=2b33f536ee6ba29a7158f5dd32a89ddaCAS |
      (b) S.-L. Zheng, J.-H. Yang, X.-L. Yu, X.-M. Chen, W. T. Wong, Inorg. Chem. 2004, 43, 830.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. W. Perkovic, Inorg. Chem. 2000, 39, 4962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1eju7s%3D&md5=865ad4836f0d62eb7b04a903ef5c4f23CAS | 11196977PubMed |

[21]  G. Vlád, I. T. Horvath, J. Org. Chem. 2002, 67, 6550.
         | Crossref | GoogleScholarGoogle Scholar | 12201781PubMed |

[22]  SHELXTL, Version 5.1, Bruker AXS: Madison, WI, 1998.

[23]  G. M. Sheldrick, SHELXL-97, 1997, Program for Refinement of Crystal Structure. University of Göttingen, Germany.