Structural Diversity and Magnetic Properties of Five Cu(ii) Complexes with Mixed Naphthalene-Based Dicarboxyl Tecton and Different N-Donor Co-Ligands
Jiong Wen A , Jing-Yun Hu A , E. Carolina Sañudo B , Min Chen A C and Chun-Sen Liu A CA Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou, Henan 450002, China.
B Institut de Nanociència i Nanotecnologia i Departament de Química Inorgànica, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain.
C Corresponding authors. Email: chenmin@zzuli.edu.cn; chunsenliu@zzuli.edu.cn
Australian Journal of Chemistry 66(8) 963-971 https://doi.org/10.1071/CH13061
Submitted: 3 February 2013 Accepted: 1 May 2013 Published: 24 June 2013
Abstract
Five new Cu(ii) complexes have been prepared by employing 2,3-naphthalenedicarboxylic acid (H2ndc) and different N-donor co-ligands, namely, [Cu(ndc)(H2O)]n (1), [Cu(ndc)(H2O)2]n (2), {[Cu1.5(ndc)(OH)(H2O)2]·2.5H2O}n (3), {[Cu(ndc)(phen)(H2O)]·CH3OH}n (4) (phen = 1,10-phenanthroline), and {[Cu2(H0.5ndc)2(4bpy)3](ClO4)·2H2O}n (5) (4bpy = 4,4′-bipyridine). Complex 1 displays a two-dimensional (2D) (4,6)-connected (32.44)2(34.42.64.75)(34.43.64.74) coordination network. Complex 2 shows a 2D 3-connected hcb network which is further interlinked via the interlayered C–H⋯π interactions to result in a three-dimensional (3D) supramolecular network. Complex 3 is a one-dimensional (1D) coordination chain which is further interlinked by the C–H⋯π and π⋯π interactions to lead to the formation of the final 3D supramolecular network. When the N-donor co-ligands phen and 4,4′-bipyridine (4bpy) were introduced, the 1D complex 4 and the 4-connected sql layered complex 5 were constructed, respectively. The final supramolecular frameworks of 4 (2D) and 5 (3D) are extended by hydrogen-bonding and C–H⋯π interactions. The structural diversity of the complexes was triggered by different reaction conditions and N-donor co-ligands. Moreover, the magnetic properties of the complexes have also been investigated and discussed.
References
[1] (a) M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Coord. Chem. Rev. 2013, 257, 1282.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=d79bc151315883d4a0f809ab54a892d8CAS |
(b) H. Wu, J. Yang, Z.-M. Su, S. R. Batten, J.-F. Ma, J. Am. Chem. Soc. 2011, 133, 11406.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. D. DeVries, P. M. Barron, E. P. Hurley, C. Hu, W. Choe, J. Am. Chem. Soc. 2011, 133, 14848.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Heine, J. Schmedt auf der Gunne, S. Dehnen, J. Am. Chem.Soc. 2011, 133, 10018.
| Crossref | GoogleScholarGoogle Scholar |
(e) C.-S. Liu, X.-G. Yang, M. Hu, M. Du, S.-M. Fang, Chem. Commun. 2012, 48, 7459.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, O. M. Yaghi, Science 2010, 329, 424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWgsb8%3D&md5=6b0ee162ce7cd6fb6f96389be2c0c2a3CAS | 20595583PubMed |
(b) C. Y. Lee, O. K. Farha, B. J. Hong, A. A. Sarjeant, S. T. Nguyen, J. T. Hupp, J. Am. Chem. Soc. 2011, 133, 15858.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-R. Li, H.-C. Zhou, Nature 2010, 2, 893.
[3] (a) G.-G. Hou, Y. Liu, Q.-K. Liu, J.-P. Ma, Y.-B. Dong, Chem. Commun. 2011, 47, 10731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyqtbzK&md5=be70f4e8c1ac7b36fc113da0fe252c65CAS |
(b) S. Pramanik, C. Zheng, X. Zhang, T. J. Emge, J. Li, J. Am. Chem. Soc. 2011, 133, 4153.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) F.-J. Song, C. Wang, W.-L. Lin, Chem. Commun. 2011, 47, 8256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslajtrk%3D&md5=9b38ca98a13d7e324d54ff5402a97500CAS |
(b) N. D. Schley, J. D. Blakemore, N. K. Subbaiyan, C. D. Incarvito, F. D’Souza, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2011, 133, 10473.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7s%3D&md5=773b56724455a9f00d9826c7f5f8cd49CAS | 19384442PubMed |
(b) L. Zhang, G.-C. Xu, H.-B. Xu, T. Zhang, Z.-M. Wang, M. Yuan, S. Gao, Chem. Commun. 2010, 46, 2554.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) W.-B. Lin, L. Ma, O. R. Evans, Chem. Commun. 2000, 2263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVylsL4%3D&md5=4e9b1c1b19f84b080e00ef116c52cb79CAS |
(b) S. Di Bella, I. Fragalà, New J. Chem. 2002, 26, 285.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) H.-X. Zhao, G.-L. Zhuang, S.-T. Wu, L.-S. Long, H.-Y. Guo, Z.-G. Ye, R.-B. Huang, L.-S. Zheng, Chem. Commun. 2009, 1644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1ansbc%3D&md5=eb1e5d7f6e3a0f7ac2621e51eed57a6cCAS |
(b) Q. Ye, Y.-M. Song, D.-W. Fu, G.-X. Wang, R.-G. Xiong, P. W. H. Chan, S.-D. Huang, Cryst. Growth Des. 2007, 7, 1568.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J. Am. Chem. Soc. 2011, 133, 10348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Gntrs%3D&md5=a97b40a14e71bd3ec12b15f9f60eb512CAS | 21591664PubMed |
(b) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) Z. Su, J. Fan, M. Chen, T.-a. Okamura, W.-Y. Sun, Cryst. Growth Des. 2011, 11, 1159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1agsbs%3D&md5=76bbd2fe6ba4b032c277114aed8eb275CAS |
(b) S.-Q. Su, C. Qin, S.-Y. Song, Z.-Y. Guo, R.-P. Deng, W. Chen, X.-Z. Song, S. Wang, G.-H. Li, H.-J. Zhang, CrystEngComm 2011, 13, 6057.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) C. N. Morrison, A. K. Powell, G. E. Kostakis, Cryst. Growth Des. 2011, 11, 3653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVOisLs%3D&md5=16c407bf3b2ebcad2cec16e3b1d72619CAS |
(b) G.-B. Li, J.-M. Liu, Y.-P. Cai, C.-Y. Su, Cryst. Growth Des. 2011, 11, 2763.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) N. Ishii, J. I. Mamiya, T. Ikeda, F. M. Winnik, Chem. Commun. 2011, 47, 1267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyguw%3D%3D&md5=42cfd7b036dbd95e7d994e9157c957ccCAS |
(b) C. Tedesco, L. Erra, I. Immediata, C. Gaeta, M. Brunelli, M. Merlini, C. Meneghini, P. Pattison, P. Neri, Cryst. Growth Des. 2010, 10, 1527.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) Y. Liu, Y. Qi, Y.-H. Su, F.-H. Zhao, Y.-X. Che, J.-M. Zheng, CrystEngComm 2010, 12, 3283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jtr3E&md5=a31233a92008d35c3a0e44551742e72cCAS |
(b) Q.-A. Zhang, J.-Y. Zhang, Q.-Y. Yu, M. Pan, C.-Y. Su, Cryst. Growth Des. 2010, 10, 4076.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) M. Chen, S.-S. Chen, T.-a. Okamura, Z. Su, M.-S. Chen, Y. Zhao, W.-Y. Sun, N. Ueyama, Cryst. Growth Des. 2011, 11, 1901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1GlsLs%3D&md5=c9d1f9206d061dbaa0bec52334313e6eCAS |
(b) G.-C. Ou, X.-L. Feng, T.-B. Lu, Cryst. Growth Des. 2011, 11, 851.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) M. K. Sharma, P. K. Bharadwaj, Inorg. Chem. 2011, 50, 1889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslyntQ%3D%3D&md5=43e6f6366bb580391d6f7dd5231c3187CAS | 21254778PubMed |
(b) J. A. K. Howard, H. A. Sparkes, CrystEngComm 2008, 10, 502.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) J. Galcera, E. Molins, Cryst. Growth Des. 2009, 9, 327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGnsLnM&md5=b56c33dfa99707804c6910b9ccf3ae49CAS |
(b) D. Zuccaccia, L. Belpassi, L. Rocchigiani, F. Tarantelli, A. Macchioni, Inorg. Chem. 2010, 49, 3080.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) S.-B. Han, Y.-H. Wei, C. Valente, I. Lagzi, J. J. Gassensmith, A. Coskun, J. F. Stoddart, B. A. Grzybowski, J. Am. Chem. Soc. 2010, 132, 16358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKntbjE&md5=e10f6fb848df03c6879497060c81126cCAS |
(b) S.-L. Huang, X.-X. Li, X.-J. Shi, H.-W. Hou, Y.-T. Fan, J. Mater. Chem. 2010, 20, 5695.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) J. Zhang, J.-T. Bu, S.-M. Chen, T. Wu, S.-T. Zheng, Y.-G. Chen, R. A. Nieto, P.-Y. Feng, X.-H. Bu, Angew. Chem. Int. Ed. 2010, 49, 8876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsbfF&md5=4fe46b46d7e80ac3e890116a00163298CAS |
(b) Z.-Y. Fu, Y. Chen, J. Zhang, S.-J. Liao, J. Mater. Chem. 2011, 21, 7895.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) X. Zhu, J.-W. Zhao, B.-L. Li, Y. Song, Y.-M. Zhang, Y. Zhang, Inorg. Chem. 2010, 49, 1266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1alu7rM&md5=178cce41d4e9777ea9327194170c7904CAS | 20039702PubMed |
(b) C.-Y. Xu, Q.-Q. Guo, X.-J. Wang, H.-W. Hou, Y.-T. Fan, Cryst. Growth Des. 2011, 11, 1869.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) S.-C. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B.-L. Chen, J. Am. Chem. Soc. 2009, 131, 12415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFyit7s%3D&md5=49e22e46c3d03fd95eceff2d6954537fCAS |
(b) Y.-J. Mu, J.-H. Fu, Y.-J. Song, Z. Li, H.-W. Hou, Y.-T. Fan, Cryst. Growth Des. 2011, 11, 2183.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) M. A. Nadeem, M. Bhadhade, R. Bircher, J. A. Stride, CrystEngComm 2010, 12, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVWgtL8%3D&md5=bf80db10e27b375d71f624d14492e91aCAS |
(b) B. Li, S.-Q. Zang, C. Ji, C.-X. Du, H.-W. Hou, T. C. W. Mak, Dalton Trans. 2011, 40, 788.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) Y.-J. Mu, G. Han, S.-Y. Ji, H.-W. Hou, Y.-T. Fan, CrystEngComm 2011, 13, 5943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2hsLvP&md5=c2961206623d9ad8174177e67e9c21ccCAS |
(b) C. Ren, L. Hou, B. Liu, G.-P. Yang, Y.-Y. Wang, Q.-Z. Shi, Dalton Trans. 2011, 40, 793.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) X. Zhu, L.-Y. Wang, X.-G. Liu, J. Wang, B.-L. Li, H.-Y. Li, CrystEngComm 2011, 13, 6090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlShsbbE&md5=fc32666777accd521e7d21cdd2d8c257CAS |
(b) K.-Z. Shao, Y.-H. Zhao, Y.-Q. Lan, X.-L. Wang, Z.-M. Su, R.-S. Wang, CrystEngComm 2011, 13, 889.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) L.-P. Zhang, J.-F. Ma, J. Yang, Y.-Y. Liu, G.-H. Wei, Cryst. Growth Des. 2009, 9, 4660.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cju7zO&md5=7217d69ef275b4e08791df03e8c3508cCAS |
(b) L.-P. Zhang, J.-F. Ma, J. Yang, Y.-Y. Pang, J.-C. Ma, Inorg. Chem. 2010, 49, 1535.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) J. Wang, Z.-J. Lin, Y.-C. Ou, N.-L. Yang, Y.-H. Zhang, M.-L. Tong, Inorg. Chem. 2008, 47, 190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSlurvK&md5=f52a8a42a2cf4b0b1c99ec849f76a34dCAS | 18069828PubMed |
(b) X.-Y. Wang, S. C. Sevov, Inorg. Chem. 2008, 47, 1037.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) S. M. Humphrey, R. A. Mole, R. I. Thompson, P. T. Wood, Inorg. Chem. 2010, 49, 3441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislyrsbo%3D&md5=e5246d03cfa011c5a99c48d699496efeCAS | 20205381PubMed |
(b) K. M. L. Taylor, A. Jin, W.-B. Lin, Angew. Chem. Int. Ed. 2008, 47, 7722.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) P. Kanoo, T. K. Maji, Eur. J. Inorg. Chem. 2010, 3762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCntr%2FF&md5=df732c2b50fb387abbce1f62d7e789eaCAS |
(b) S. Furukawa, K. Hirai, K. Nakagawa, Y. Takashima, R. Matsuda, T. Tsuruoka, M. Kondo, R. Haruki, D. Tanaka, H. Sakamoto, S. Shimomura, O. Sakata, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 1766.
| Crossref | GoogleScholarGoogle Scholar |
[27] (a) C. Lampropoulos, C. Koo, S. O. Hill, K. A. Abboud, G. Christou, Inorg. Chem. 2008, 47, 11180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSnurjK&md5=015fdc27e636a6329ef24fe7decc50aaCAS | 18950241PubMed |
(b) T.-L. Hu, J.-R. Li, C.-S. Liu, X.-S. Shi, J.-N. Zhou, X.-H. Bu, J. Ribas, Inorg. Chem. 2006, 45, 162.
| Crossref | GoogleScholarGoogle Scholar |
[28] (a) M. C. Das, H. Xu, Z.-Y. Wang, G. Srinivas, W. Zhou, Y.-F. Yue, V. N. Nesterov, G.-D. Qian, B.-L. Chen, Chem. Commun. 2011, 47, 11715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejtrjO&md5=43ff71e3a9bbb568f7d724a75410d7d8CAS |
(b) A. Modrow, D. Zargarani, R. Herges, N. Stock, Dalton Trans. 2011, 40, 4217.
| Crossref | GoogleScholarGoogle Scholar |
[29] (a) S. Jeong, J. Choi, M. Park, M. Oh, D. Moon, M. S. Lah, CrystEngComm 2010, 12, 2179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrtbrL&md5=ef10049b375347bd2b86c482f16f837eCAS |
(b) H. Chun, H. Jung, J. Seo, Inorg. Chem. 2009, 48, 2043.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Nakagawa, D. Tanaka, S. Horike, S. Shimomura, M. Higuchi, S. Kitagawa, Chem. Commun. 2010, 46, 4258.
| Crossref | GoogleScholarGoogle Scholar |
[30] (a) Q.-G. Meng, S.-T. Yan, G.-Q. Kong, X.-L. Yang, C.-D. Wu, CrystEngComm 2010, 12, 688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWjuro%3D&md5=4a4310f2239475145e384aadde705e7cCAS |
(b) R. Koner, I. Goldberg, CrystEngComm 2009, 11, 367.
| Crossref | GoogleScholarGoogle Scholar |
[31] (a) J. K. Clegg, S. S. Iremonger, M. J. Hayter, P. D. Southon, R. B. Macquart, M. B. Duriska, P. Jensen, P. Turner, K. A. Jolliffe, C. J. Kepert, G. V. Meehan, L. F. Lindoy, Angew. Chem. Int. Ed. 2010, 49, 1075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktb4%3D&md5=668d19c3a59c4cca4f59e0cad9094761CAS |
(b) B. J. Burnett, P. M. Barron, C.-H. Hu, W. Choe, J. Am. Chem. Soc. 2011, 133, 9984.
| Crossref | GoogleScholarGoogle Scholar |
(c) H.-L. Jiang, Y. Tatsu, Z.-H. Lu, Q. Xu, J. Am. Chem. Soc. 2010, 132, 5586.
| Crossref | GoogleScholarGoogle Scholar |
[32] (a) S.-M. Fang, M. Hu, Q. Zhang, M. Du, C.-S. Liu, Dalton Trans. 2011, 40, 4527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKmsL0%3D&md5=9294cbdccd68512d6cb4f283d794a218CAS | 21431216PubMed |
(b) S.-M. Fang, Q. Zhang, M. Hu, X.-G. Yang, L.-M. Zhou, M. Du, C.-S. Liu, Cryst. Growth Des. 2010, 10, 4773.
| Crossref | GoogleScholarGoogle Scholar |
[33] V. A. Blatov, TOPOS, A Multipurpose Crystallochemical Analysis with the Program Package 2004 (Samara State University: Samara, Russia).
[34] A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=6c9542f3267a4f0774f4ff3459a5b808CAS |
[35] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool 2005 (Utrecht University: Utrecht, The Netherlands).
[36] M. Nishio, M. Hirota, Y. Umezawa, A Comprehensive Monograph: The C–H⋯π Interaction Evidence, Nature, and Consequences 1998 (Wiley-VCH: New York, NY).
[37] J. X. Chen, M. Ohba, D. Y. Zhao, W. Kaneko, S. Kitagawa, Cryst. Growth Des. 2006, 6, 664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVGjtA%3D%3D&md5=ebd8e4b3dcc059bf38fbb9d4319f029eCAS |
[38] C.-S. Liu, M. Hu, Z. Kristallogr. NCS 2010, 225, 351.
| 1:CAS:528:DC%2BC3cXpslyhtrs%3D&md5=67a7ba59af82e569d625221fc88d1f72CAS |
[39] (a) Y. Cheng, P. Xu, Y.-B. Ding, Y.-G. Yin, CrystEngComm 2011, 13, 2644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVagurs%3D&md5=a4da7038a51196468cc182db011cd057CAS |
(b) A.-X. Tian, J. Ying, J. Peng, J.-Q. Sha, H.-J. Pang, P.-P. Zhang, Y. Chen, M. Zhu, Z.-M. Su, Inorg. Chem. 2009, 48, 100.
| Crossref | GoogleScholarGoogle Scholar |
[40] A. X. S. Bruker, SAINT Software Reference Manual 1998 (SAINT: Madison, WI).
[41] G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Corrected Software 1996 (University of Göttingen: Göttingen, Germany).
[42] G. M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen, Germany).