Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structural Diversity and Magnetic Properties of Five Cu(ii) Complexes with Mixed Naphthalene-Based Dicarboxyl Tecton and Different N-Donor Co-Ligands

Jiong Wen A , Jing-Yun Hu A , E. Carolina Sañudo B , Min Chen A C and Chun-Sen Liu A C
+ Author Affiliations
- Author Affiliations

A Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou, Henan 450002, China.

B Institut de Nanociència i Nanotecnologia i Departament de Química Inorgànica, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain.

C Corresponding authors. Email: chenmin@zzuli.edu.cn; chunsenliu@zzuli.edu.cn

Australian Journal of Chemistry 66(8) 963-971 https://doi.org/10.1071/CH13061
Submitted: 3 February 2013  Accepted: 1 May 2013   Published: 24 June 2013

Abstract

Five new Cu(ii) complexes have been prepared by employing 2,3-naphthalenedicarboxylic acid (H2ndc) and different N-donor co-ligands, namely, [Cu(ndc)(H2O)]n (1), [Cu(ndc)(H2O)2]n (2), {[Cu1.5(ndc)(OH)(H2O)2]·2.5H2O}n (3), {[Cu(ndc)(phen)(H2O)]·CH3OH}n (4) (phen = 1,10-phenanthroline), and {[Cu2(H0.5ndc)2(4bpy)3](ClO4)·2H2O}n (5) (4bpy = 4,4′-bipyridine). Complex 1 displays a two-dimensional (2D) (4,6)-connected (32.44)2(34.42.64.75)(34.43.64.74) coordination network. Complex 2 shows a 2D 3-connected hcb network which is further interlinked via the interlayered C–H⋯π interactions to result in a three-dimensional (3D) supramolecular network. Complex 3 is a one-dimensional (1D) coordination chain which is further interlinked by the C–H⋯π and π⋯π interactions to lead to the formation of the final 3D supramolecular network. When the N-donor co-ligands phen and 4,4′-bipyridine (4bpy) were introduced, the 1D complex 4 and the 4-connected sql layered complex 5 were constructed, respectively. The final supramolecular frameworks of 4 (2D) and 5 (3D) are extended by hydrogen-bonding and C–H⋯π interactions. The structural diversity of the complexes was triggered by different reaction conditions and N-donor co-ligands. Moreover, the magnetic properties of the complexes have also been investigated and discussed.


References

[1]  (a) M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=d79bc151315883d4a0f809ab54a892d8CAS |
      (b) H. Wu, J. Yang, Z.-M. Su, S. R. Batten, J.-F. Ma, J. Am. Chem. Soc. 2011, 133, 11406.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. D. DeVries, P. M. Barron, E. P. Hurley, C. Hu, W. Choe, J. Am. Chem. Soc. 2011, 133, 14848.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Heine, J. Schmedt auf der Gunne, S. Dehnen, J. Am. Chem.Soc. 2011, 133, 10018.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C.-S. Liu, X.-G. Yang, M. Hu, M. Du, S.-M. Fang, Chem. Commun. 2012, 48, 7459.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, O. M. Yaghi, Science 2010, 329, 424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWgsb8%3D&md5=6b0ee162ce7cd6fb6f96389be2c0c2a3CAS | 20595583PubMed |
      (b) C. Y. Lee, O. K. Farha, B. J. Hong, A. A. Sarjeant, S. T. Nguyen, J. T. Hupp, J. Am. Chem. Soc. 2011, 133, 15858.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-R. Li, H.-C. Zhou, Nature 2010, 2, 893.

[3]  (a) G.-G. Hou, Y. Liu, Q.-K. Liu, J.-P. Ma, Y.-B. Dong, Chem. Commun. 2011, 47, 10731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyqtbzK&md5=be70f4e8c1ac7b36fc113da0fe252c65CAS |
      (b) S. Pramanik, C. Zheng, X. Zhang, T. J. Emge, J. Li, J. Am. Chem. Soc. 2011, 133, 4153.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) F.-J. Song, C. Wang, W.-L. Lin, Chem. Commun. 2011, 47, 8256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslajtrk%3D&md5=9b38ca98a13d7e324d54ff5402a97500CAS |
      (b) N. D. Schley, J. D. Blakemore, N. K. Subbaiyan, C. D. Incarvito, F. D’Souza, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2011, 133, 10473.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7s%3D&md5=773b56724455a9f00d9826c7f5f8cd49CAS | 19384442PubMed |
      (b) L. Zhang, G.-C. Xu, H.-B. Xu, T. Zhang, Z.-M. Wang, M. Yuan, S. Gao, Chem. Commun. 2010, 46, 2554.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) W.-B. Lin, L. Ma, O. R. Evans, Chem. Commun. 2000, 2263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVylsL4%3D&md5=4e9b1c1b19f84b080e00ef116c52cb79CAS |
      (b) S. Di Bella, I. Fragalà, New J. Chem. 2002, 26, 285.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) H.-X. Zhao, G.-L. Zhuang, S.-T. Wu, L.-S. Long, H.-Y. Guo, Z.-G. Ye, R.-B. Huang, L.-S. Zheng, Chem. Commun. 2009, 1644.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1ansbc%3D&md5=eb1e5d7f6e3a0f7ac2621e51eed57a6cCAS |
      (b) Q. Ye, Y.-M. Song, D.-W. Fu, G.-X. Wang, R.-G. Xiong, P. W. H. Chan, S.-D. Huang, Cryst. Growth Des. 2007, 7, 1568.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J. Am. Chem. Soc. 2011, 133, 10348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Gntrs%3D&md5=a97b40a14e71bd3ec12b15f9f60eb512CAS | 21591664PubMed |
      (b) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) Z. Su, J. Fan, M. Chen, T.-a. Okamura, W.-Y. Sun, Cryst. Growth Des. 2011, 11, 1159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1agsbs%3D&md5=76bbd2fe6ba4b032c277114aed8eb275CAS |
      (b) S.-Q. Su, C. Qin, S.-Y. Song, Z.-Y. Guo, R.-P. Deng, W. Chen, X.-Z. Song, S. Wang, G.-H. Li, H.-J. Zhang, CrystEngComm 2011, 13, 6057.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) C. N. Morrison, A. K. Powell, G. E. Kostakis, Cryst. Growth Des. 2011, 11, 3653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVOisLs%3D&md5=16c407bf3b2ebcad2cec16e3b1d72619CAS |
      (b) G.-B. Li, J.-M. Liu, Y.-P. Cai, C.-Y. Su, Cryst. Growth Des. 2011, 11, 2763.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) N. Ishii, J. I. Mamiya, T. Ikeda, F. M. Winnik, Chem. Commun. 2011, 47, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyguw%3D%3D&md5=42cfd7b036dbd95e7d994e9157c957ccCAS |
      (b) C. Tedesco, L. Erra, I. Immediata, C. Gaeta, M. Brunelli, M. Merlini, C. Meneghini, P. Pattison, P. Neri, Cryst. Growth Des. 2010, 10, 1527.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) Y. Liu, Y. Qi, Y.-H. Su, F.-H. Zhao, Y.-X. Che, J.-M. Zheng, CrystEngComm 2010, 12, 3283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jtr3E&md5=a31233a92008d35c3a0e44551742e72cCAS |
      (b) Q.-A. Zhang, J.-Y. Zhang, Q.-Y. Yu, M. Pan, C.-Y. Su, Cryst. Growth Des. 2010, 10, 4076.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) M. Chen, S.-S. Chen, T.-a. Okamura, Z. Su, M.-S. Chen, Y. Zhao, W.-Y. Sun, N. Ueyama, Cryst. Growth Des. 2011, 11, 1901.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1GlsLs%3D&md5=c9d1f9206d061dbaa0bec52334313e6eCAS |
      (b) G.-C. Ou, X.-L. Feng, T.-B. Lu, Cryst. Growth Des. 2011, 11, 851.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) M. K. Sharma, P. K. Bharadwaj, Inorg. Chem. 2011, 50, 1889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslyntQ%3D%3D&md5=43e6f6366bb580391d6f7dd5231c3187CAS | 21254778PubMed |
      (b) J. A. K. Howard, H. A. Sparkes, CrystEngComm 2008, 10, 502.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) J. Galcera, E. Molins, Cryst. Growth Des. 2009, 9, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGnsLnM&md5=b56c33dfa99707804c6910b9ccf3ae49CAS |
      (b) D. Zuccaccia, L. Belpassi, L. Rocchigiani, F. Tarantelli, A. Macchioni, Inorg. Chem. 2010, 49, 3080.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) S.-B. Han, Y.-H. Wei, C. Valente, I. Lagzi, J. J. Gassensmith, A. Coskun, J. F. Stoddart, B. A. Grzybowski, J. Am. Chem. Soc. 2010, 132, 16358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKntbjE&md5=e10f6fb848df03c6879497060c81126cCAS |
      (b) S.-L. Huang, X.-X. Li, X.-J. Shi, H.-W. Hou, Y.-T. Fan, J. Mater. Chem. 2010, 20, 5695.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) J. Zhang, J.-T. Bu, S.-M. Chen, T. Wu, S.-T. Zheng, Y.-G. Chen, R. A. Nieto, P.-Y. Feng, X.-H. Bu, Angew. Chem. Int. Ed. 2010, 49, 8876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsbfF&md5=4fe46b46d7e80ac3e890116a00163298CAS |
      (b) Z.-Y. Fu, Y. Chen, J. Zhang, S.-J. Liao, J. Mater. Chem. 2011, 21, 7895.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) X. Zhu, J.-W. Zhao, B.-L. Li, Y. Song, Y.-M. Zhang, Y. Zhang, Inorg. Chem. 2010, 49, 1266.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1alu7rM&md5=178cce41d4e9777ea9327194170c7904CAS | 20039702PubMed |
      (b) C.-Y. Xu, Q.-Q. Guo, X.-J. Wang, H.-W. Hou, Y.-T. Fan, Cryst. Growth Des. 2011, 11, 1869.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) S.-C. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B.-L. Chen, J. Am. Chem. Soc. 2009, 131, 12415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFyit7s%3D&md5=49e22e46c3d03fd95eceff2d6954537fCAS |
      (b) Y.-J. Mu, J.-H. Fu, Y.-J. Song, Z. Li, H.-W. Hou, Y.-T. Fan, Cryst. Growth Des. 2011, 11, 2183.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) M. A. Nadeem, M. Bhadhade, R. Bircher, J. A. Stride, CrystEngComm 2010, 12, 1391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVWgtL8%3D&md5=bf80db10e27b375d71f624d14492e91aCAS |
      (b) B. Li, S.-Q. Zang, C. Ji, C.-X. Du, H.-W. Hou, T. C. W. Mak, Dalton Trans. 2011, 40, 788.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) Y.-J. Mu, G. Han, S.-Y. Ji, H.-W. Hou, Y.-T. Fan, CrystEngComm 2011, 13, 5943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2hsLvP&md5=c2961206623d9ad8174177e67e9c21ccCAS |
      (b) C. Ren, L. Hou, B. Liu, G.-P. Yang, Y.-Y. Wang, Q.-Z. Shi, Dalton Trans. 2011, 40, 793.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) X. Zhu, L.-Y. Wang, X.-G. Liu, J. Wang, B.-L. Li, H.-Y. Li, CrystEngComm 2011, 13, 6090.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlShsbbE&md5=fc32666777accd521e7d21cdd2d8c257CAS |
      (b) K.-Z. Shao, Y.-H. Zhao, Y.-Q. Lan, X.-L. Wang, Z.-M. Su, R.-S. Wang, CrystEngComm 2011, 13, 889.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) L.-P. Zhang, J.-F. Ma, J. Yang, Y.-Y. Liu, G.-H. Wei, Cryst. Growth Des. 2009, 9, 4660.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cju7zO&md5=7217d69ef275b4e08791df03e8c3508cCAS |
      (b) L.-P. Zhang, J.-F. Ma, J. Yang, Y.-Y. Pang, J.-C. Ma, Inorg. Chem. 2010, 49, 1535.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) J. Wang, Z.-J. Lin, Y.-C. Ou, N.-L. Yang, Y.-H. Zhang, M.-L. Tong, Inorg. Chem. 2008, 47, 190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSlurvK&md5=f52a8a42a2cf4b0b1c99ec849f76a34dCAS | 18069828PubMed |
      (b) X.-Y. Wang, S. C. Sevov, Inorg. Chem. 2008, 47, 1037.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) S. M. Humphrey, R. A. Mole, R. I. Thompson, P. T. Wood, Inorg. Chem. 2010, 49, 3441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislyrsbo%3D&md5=e5246d03cfa011c5a99c48d699496efeCAS | 20205381PubMed |
      (b) K. M. L. Taylor, A. Jin, W.-B. Lin, Angew. Chem. Int. Ed. 2008, 47, 7722.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) P. Kanoo, T. K. Maji, Eur. J. Inorg. Chem. 2010, 3762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCntr%2FF&md5=df732c2b50fb387abbce1f62d7e789eaCAS |
      (b) S. Furukawa, K. Hirai, K. Nakagawa, Y. Takashima, R. Matsuda, T. Tsuruoka, M. Kondo, R. Haruki, D. Tanaka, H. Sakamoto, S. Shimomura, O. Sakata, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 1766.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) C. Lampropoulos, C. Koo, S. O. Hill, K. A. Abboud, G. Christou, Inorg. Chem. 2008, 47, 11180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSnurjK&md5=015fdc27e636a6329ef24fe7decc50aaCAS | 18950241PubMed |
      (b) T.-L. Hu, J.-R. Li, C.-S. Liu, X.-S. Shi, J.-N. Zhou, X.-H. Bu, J. Ribas, Inorg. Chem. 2006, 45, 162.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  (a) M. C. Das, H. Xu, Z.-Y. Wang, G. Srinivas, W. Zhou, Y.-F. Yue, V. N. Nesterov, G.-D. Qian, B.-L. Chen, Chem. Commun. 2011, 47, 11715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejtrjO&md5=43ff71e3a9bbb568f7d724a75410d7d8CAS |
      (b) A. Modrow, D. Zargarani, R. Herges, N. Stock, Dalton Trans. 2011, 40, 4217.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  (a) S. Jeong, J. Choi, M. Park, M. Oh, D. Moon, M. S. Lah, CrystEngComm 2010, 12, 2179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrtbrL&md5=ef10049b375347bd2b86c482f16f837eCAS |
      (b) H. Chun, H. Jung, J. Seo, Inorg. Chem. 2009, 48, 2043.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Nakagawa, D. Tanaka, S. Horike, S. Shimomura, M. Higuchi, S. Kitagawa, Chem. Commun. 2010, 46, 4258.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  (a) Q.-G. Meng, S.-T. Yan, G.-Q. Kong, X.-L. Yang, C.-D. Wu, CrystEngComm 2010, 12, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWjuro%3D&md5=4a4310f2239475145e384aadde705e7cCAS |
      (b) R. Koner, I. Goldberg, CrystEngComm 2009, 11, 367.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  (a) J. K. Clegg, S. S. Iremonger, M. J. Hayter, P. D. Southon, R. B. Macquart, M. B. Duriska, P. Jensen, P. Turner, K. A. Jolliffe, C. J. Kepert, G. V. Meehan, L. F. Lindoy, Angew. Chem. Int. Ed. 2010, 49, 1075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktb4%3D&md5=668d19c3a59c4cca4f59e0cad9094761CAS |
      (b) B. J. Burnett, P. M. Barron, C.-H. Hu, W. Choe, J. Am. Chem. Soc. 2011, 133, 9984.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H.-L. Jiang, Y. Tatsu, Z.-H. Lu, Q. Xu, J. Am. Chem. Soc. 2010, 132, 5586.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  (a) S.-M. Fang, M. Hu, Q. Zhang, M. Du, C.-S. Liu, Dalton Trans. 2011, 40, 4527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKmsL0%3D&md5=9294cbdccd68512d6cb4f283d794a218CAS | 21431216PubMed |
      (b) S.-M. Fang, Q. Zhang, M. Hu, X.-G. Yang, L.-M. Zhou, M. Du, C.-S. Liu, Cryst. Growth Des. 2010, 10, 4773.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  V. A. Blatov, TOPOS, A Multipurpose Crystallochemical Analysis with the Program Package 2004 (Samara State University: Samara, Russia).

[34]  A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=6c9542f3267a4f0774f4ff3459a5b808CAS |

[35]  A. L. Spek, PLATON, A Multipurpose Crystallographic Tool 2005 (Utrecht University: Utrecht, The Netherlands).

[36]  M. Nishio, M. Hirota, Y. Umezawa, A Comprehensive Monograph: The CH⋯π Interaction Evidence, Nature, and Consequences 1998 (Wiley-VCH: New York, NY).

[37]  J. X. Chen, M. Ohba, D. Y. Zhao, W. Kaneko, S. Kitagawa, Cryst. Growth Des. 2006, 6, 664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVGjtA%3D%3D&md5=ebd8e4b3dcc059bf38fbb9d4319f029eCAS |

[38]  C.-S. Liu, M. Hu, Z. Kristallogr. NCS 2010, 225, 351.
         | 1:CAS:528:DC%2BC3cXpslyhtrs%3D&md5=67a7ba59af82e569d625221fc88d1f72CAS |

[39]  (a) Y. Cheng, P. Xu, Y.-B. Ding, Y.-G. Yin, CrystEngComm 2011, 13, 2644.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVagurs%3D&md5=a4da7038a51196468cc182db011cd057CAS |
      (b) A.-X. Tian, J. Ying, J. Peng, J.-Q. Sha, H.-J. Pang, P.-P. Zhang, Y. Chen, M. Zhu, Z.-M. Su, Inorg. Chem. 2009, 48, 100.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. X. S. Bruker, SAINT Software Reference Manual 1998 (SAINT: Madison, WI).

[41]  G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Corrected Software 1996 (University of Göttingen: Göttingen, Germany).

[42]  G. M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen, Germany).