Novel Electric Responsive Columnar Liquid Crystals based on Perylene Tetra sec-alkyl Ester Derivatives
Lei Wang A C , Qing Cui A , Xiao-Fang Chen D , Yang Li A , Zheng-Qiang Li A , Dong Wang A and Huai Yang A B EA State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
B Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
C National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
D Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
E Corresponding author. Email: yanghuai@mater.ustb.edu.cn
Australian Journal of Chemistry 66(6) 692-700 https://doi.org/10.1071/CH13057
Submitted: 5 February 2013 Accepted: 22 March 2013 Published: 15 May 2013
Abstract
A series of novel perylene tetra sec-alkyl ester compounds were successfully designed and synthesised. The photophysical properties were investigated and the UV absorption and fluorescence emission spectra displayed a mirror-image relationship. The compound PS8 showed the highest fluorescent quantum yield, while the fluorescence of PS8 was quenched in the aggregated state in mixed solvents. Moreover, the electrochemical properties of the perylene derivatives were studied to determine the molecules’ highest occupied molecular orbital and lowest unoccupied molecular orbital levels by cyclic voltammetry. The most important result was that PS8 exhibited a columnar phase at room temperature and was responsive to an electric field. PS8 could perpendicularly orient to an applied electric field. In addition, highly oriented face-on alignment was achieved on indium tin oxide-covered glass by thermal annealing.
References
[1] B. R. Kaafarani, Chem. Mater. 2011, 23, 378.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyiur7P&md5=176acd2f8f3f06b2a8abb298b5c3b571CAS |
[2] N. Boden, R. J. Bushby, J. Clements, B. Movaghar, K. J. Donovan, T. Kreouzis, Phys. Rev. B 1998, 58, 3063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFSitbw%3D&md5=052599999bf3660a62c63b74cf6df4e6CAS |
[3] J. Li, J. Chang, H. S. Tan, H. Jiang, X. Chen, Z. Chen, J. Zhang, J. Wu, Chem. Sci. 2012, 3, 846.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOrtL0%3D&md5=b1d592c85e1645f9582d7aa7174ac51cCAS |
[4] T. E. Kaiser, H. Wang, V. Stepanenko, F. Würthner, Angew. Chem. Int. Ed. 2007, 46, 5541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlKrt7w%3D&md5=93aa246e90056c15d916e67e20390e8fCAS |
[5] T. Metzroth, A. Hoffmann, R. Martín-Rapún, M. M. J. Smulders, K. Pieterse, A. R. A. Palmans, J. A. J. M. Vekemans, E. W. Meijer, H. W. Spiess, J. Gauss, Chem. Sci. 2011, 2, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWqsbjJ&md5=7139ac6dee8a4b2ea86df2a701ffdf3eCAS |
[6] C.-K. Hau, S. S.-Y. Chui, W. Lu, C.-M. Che, P.-S. Cheng, T. C. W. Mak, Q. Miao, H. N. C. Wong, Chem. Sci. 2011, 2, 1068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtV2itLc%3D&md5=71bbf754cf25ab760d0fe53e2ac28379CAS |
[7] K. Q. Zhao, C. Chen, H. Monobe, P. Hu, B.-Q. Wang, Y. Shimizu, Chem. Commun. 2011, 47, 6290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGgsbc%3D&md5=6225470011fadba8bfb82d5f47b861baCAS |
[8] K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. M. Zuo, L. Zang, J. Am. Chem. Soc. 2005, 127, 10496.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWiur4%3D&md5=6ec29bd1287de456f88d2b6a8bec37d8CAS | 16045330PubMed |
[9] H. K. Bisoyi, S. Kumar, Chem. Soc. Rev. 2011, 40, 306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKju7bO&md5=a0f67222d566c5bdcc3c90381c9a777bCAS | 21125105PubMed |
[10] A. Wicklein, A. Lang, M. Muth, M. Thelakkat, J. Am. Chem. Soc. 2009, 131, 14442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqtb%2FL&md5=3b3d86148b9d76a61045da88a5eb31f9CAS | 19764754PubMed |
[11] G. H. Fu, M. L. Wang, Y. L. Wang, N. Xia, X. J. Zhang, M. Yang, P. Zheng, W. Wang, C. Burger, New J. Chem. 2009, 33, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2ms78%3D&md5=8bf4ae0a6b0c710bc1b5eb6f9110198fCAS |
[12] R. A. Cormier, B. A. Gregg, Chem. Mater. 1998, 10, 1309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12msLc%3D&md5=0e87ac00d4d5b63f13ff496467ce4b0bCAS |
[13] M. V. Martínez-Díaz, G. de la Torre, T. Torres, Chem. Commun. 2010, 46, 7090.
| Crossref | GoogleScholarGoogle Scholar |
[14] L. Li, S.-W. Kang, J. Harden, Q. Sun, X. Zhou, L. Dai, A. Jakli, S. Kumarb, Q. Li, Liq. Cryst. 2008, 35, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFygt7s%3D&md5=d807b021923632368c122f0e72155fd3CAS |
[15] R. I. Gearba, D. V. Anokhin, A. I. Bondar, W. Bras, M. Jahr, M. Lehmann, D. A. Ivanov, Adv. Mater. 2007, 19, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVSntLo%3D&md5=82d05d8ded8c85ef26d38d97a0c42923CAS |
[16] F. Nolde, W. Pisula, S. Muller, C. Kohl, K. Müllen, Chem. Mater. 2006, 18, 3715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVGhsbo%3D&md5=b33af6d85da74dad38b676639b064ddfCAS |
[17] T. D. Choudhury, N. V. S. Rao, R. Tenent, J. Blackburn, B. Gregg, I. I. Smalyukh, J. Phys. Chem. B 2011, 115, 609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFCjsQ%3D%3D&md5=ad9ae64d12898a4344c32096a4928b69CAS | 21214228PubMed |
[18] S. Sergeyev, J. Levin, J. Y. Balandier, E. Pouzet, Y. H. Geerts, Mendeleev Commun. 2009, 19, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGnsbvO&md5=78b1caa3252b44686e00935524b74afaCAS |
[19] K. Venkatesan, P. H. J. Kouwer, S. Yagi, P. Muller, T. M. Swager, J. Mater. Chem. 2008, 18, 400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVCltQ%3D%3D&md5=7b3be5f67c721d24d75a5be920356254CAS |
[20] O. Thiebaut, H. Bock, E. Grelet, J. Am. Chem. Soc. 2010, 132, 6886.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1yqsb4%3D&md5=2b0d885d4e9b5a52484743ea71cb90abCAS | 20443555PubMed |
[21] N. Aumsuwan, S. Heinhorst, M. W. Urban, Biomacromolecules 2007, 8, 713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktV2nsA%3D%3D&md5=f834fcbc76e7dbb8c30b0e31db4d5ec1CAS | 17291097PubMed |
[22] D. Miyajima, K. Tashiro, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, J. Am. Chem. Soc. 2009, 131, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2rtb%2FL&md5=505141de2d5659608bcf525529d812dfCAS | 19128171PubMed |
[23] K. Sato, Y. Itoh, T. Aida, J. Am. Chem. Soc. 2011, 133, 13767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVemsbo%3D&md5=2c84fcedbbe9ffab1c7b371889b939edCAS | 21627140PubMed |
[24] M. L. Bushey, C. Thuc-Quyen Nguyen, Nuckolls, J. Am. Chem. Soc. 2003, 125, 8264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVChsL0%3D&md5=300fd87c5e57ac91e8e15f30e3b60920CAS | 12837098PubMed |
[25] D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Angew. Chem. Int. Ed. 2011, 123, 8011.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) L. Wang, S. J. Park, S. H. Lee, Y. J. Kim, Y. B. Kook, S. W. Kuo, R. M. V. Horn, S. Z. D. Cheng, M. H. Lee, K. U. Jeong, Chem. Mater. 2009, 21, 3838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSmtLY%3D&md5=c18fed00f57195e083c89275862277f0CAS |
(b) L. Wang, K. U. Jeong, M. H. Lee, J. Mater. Chem. 2008, 18, 2657.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Wang, H. Cho, S. H. Lee, C. Lee, K. U. Jeong, M. H. Lee, J. Mater. Chem. 2011, 21, 60.
| Crossref | GoogleScholarGoogle Scholar |
[27] X. Mo, M. M. Shi, J. C. Huang, M. Wang, H. Z. Chen, Dyes Pigments 2008, 76, 236.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. Benning, H.-S. Kitzerow, H. Bock, M.-F. Achard, Liq. Cryst. 2000, 27, 901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFClu74%3D&md5=2be7052d96e31d60c89321582112886bCAS |
[29] S. S. Besbes, E. Grelet, H. Bock, Angew. Chem. Int. Ed. 2006, 45, 1783.
| Crossref | GoogleScholarGoogle Scholar |
[30] T. Hassheider, S. A. Benning, H.-S. Kitzerow, M.-F. Achard, H. Bock, Angew. Chem. Int. Ed. 2001, 40, 2060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis7Y%3D&md5=4fca7300c5a85a8e72149131bfdd2cdfCAS |
[31] C. Huang, S. Barlow, S. R. Marder, J. Org. Chem. 2011, 76, 2386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1yrtLY%3D&md5=6cea95542a9c27a38cc0baa37cf0b178CAS | 21410184PubMed |
[32] V. Percec, M. Peterca, T. Tadjiev, X. Zeng, G. Ungar, P. Leowanawat, E. Aqad, M. R. Imam, B. M. Rosen, U. Akbey, R. Graf, S. Sekharan, D. Sebastiani, H. W. Spiess, P. A. Heiney, S. D. Hudson, J. Am. Chem. Soc. 2011, 133, 12197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFWht74%3D&md5=7bf914ff7c399ffdb35a1eb41e44461fCAS | 21699258PubMed |
[33] X. C. Liang, X. F. Chen, C. Y. Li, Z. H. Shen, X. H. Fan, Q. F. Zhou, Polymer 2010, 51, 3693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWmsbY%3D&md5=8fc60caf14ed2f6aad1a86ec2310766fCAS |
[34] E. Charlet, E. Grelet, P. Brettes, H. Bock, H. Saadaoui, L. Cisse, P. Destruel, N. Gherardi, I. Seguy, Appl. Phys. Lett. 2008, 92, 024107.
| Crossref | GoogleScholarGoogle Scholar |
[35] S. Archambeau, I. Seguy, P. Jolinat, J. Farenc, P. Destruel, T. P. Nguyen, H. Bock, E. Grelet, Appl. Surf. Sci. 2006, 253, 2078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eltLjO&md5=94d462cb1dcda7813f24af5c2887053bCAS |
[36] T. Weil, J. Tom Vosch, K. Hofkens, K. Peneva, Müllen, Angew. Chem. Int. Ed. 2010, 49, 9068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsb%2FM&md5=69e7b8c089c8f1f703738e3f3454adb7CAS |