Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Supramolecular Interaction of Gliclazide with Cucurbit[7]uril and its Analytical Application

Guang-Quan Wang A B , Yan-Fang Qin A , Li-Ming Du A D and Yun-Long Fu C
+ Author Affiliations
- Author Affiliations

A Analytical and Testing Center, Shanxi Normal University, Linfen, Shanxi 041004, China.

B Transportation Institute, Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

C School of Chemistry and Materials Science, Shanxi Normal University, Linfen, Shanxi 041004, China.

D Corresponding author. Email: lmd@dns.sxnu.edu.cn

Australian Journal of Chemistry 66(6) 701-709 https://doi.org/10.1071/CH13087
Submitted: 21 February 2013  Accepted: 27 March 2013   Published: 17 April 2013

Abstract

Gliclazide (GLZ) is non-fluorescent in aqueous solution. This property makes its determination through direct fluorescent methods impossible. Palmatine (PAL) exhibits very weak fluorescence emissions in aqueous solution. However, in acidic media at room temperature, PAL can react with cucurbit[7]uril (CB[7]) to form a stable complex and the fluorescence intensity of the complex is greatly enhanced. Dramatic quenching of the fluorescence intensity of the CB[7]–PAL complex was observed with the addition of GLZ. The competing reactions and the supramolecular interaction mechanisms between GLZ and PAL as they fight for occupancy of the CB[7] cavity were studied using spectrofluorimetry, 1H NMR spectroscopy, and molecular modelling calculations. The association constants of the complexes formed between the host and the guest were determined. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescent probe method of high sensitivity was developed to determine GLZ in its pharmaceutical dosage forms and in human plasma with good precision and accuracy. The linear range of the method was from 0.003 to 2.100 μg mL–1. The limit of detection was 0.001 μg mL–1. This shows that the proposed method has promising potential for therapeutic monitoring and pharmacokinetics and for clinical application.


References

[1]  W. A. Freeman, W. L. Mock, N. Y. Shih, J. Am. Chem. Soc. 1981, 103, 7367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmvV2mtA%3D%3D&md5=2528f1856a7096e02af99c62cd8d529eCAS |

[2]  A. Day, A. P. Arnold, R. J. Blanch, B. Snushall, J. Org. Chem. 2001, 66, 8094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotV2lurw%3D&md5=e8312de56cfc8be22c7df496105a3a8fCAS | 11722210PubMed |

[3]  J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2000, 122, 540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Gjtw%3D%3D&md5=bf96c4cead4862075ea20c1f54f7342eCAS |

[4]  J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim, K. Kim, Acc. Chem. Res. 2003, 36, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFCnt7s%3D&md5=bda3b94187ce0d6aa25252450c680288CAS | 12924959PubMed |

[5]  J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. Int. Ed. 2005, 44, 4844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCntbc%3D&md5=5f4cec02c29ea77aaf41ce22be956447CAS |

[6]  W. M. Nau, J. Mohanty, Int. J. Photoenergy 2005, 7, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOlt7rE&md5=a5f8ec52b5cc5bfd96e70c44a7a749adCAS |

[7]  J. Mohanty, A. C. Bhasikuttan, S. Dutta Choudhury, H. Pal, J. Phys. Chem. B 2008, 112, 10782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslegt7g%3D&md5=a91b6bf6f5ad76ecd364438e0d1dc177CAS | 18698716PubMed |

[8]  M. Megyesi, L. Biczók, I. Jablonkai, J. Phys. Chem. C 2008, 112, 3410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Grsbw%3D&md5=6a22683060517c9e697e136005e39ecdCAS |

[9]  M. del Pozo, L. Hernández, C. Quintanaaa, Talanta 2010, 81, 1542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFGltr4%3D&md5=bd8dca8f84b6e634f2394bed1fae2f6fCAS | 20441936PubMed |

[10]  H. M. Zhang, J. Y. Yang, L. M. Du, C. F. Li, H. Wu, Anal. Methods 2011, 3, 1156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslWnsbo%3D&md5=b47c48038d5f17a823b26d9207bc6644CAS |

[11]  Y. X. Chang, Y. Q. Qiu, L. M. Du, C. F. Li, M. Guo, Analyst 2011, 136, 4168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ags7bF&md5=524a79528370bdcff5ad3307d48eb171CAS | 21858296PubMed |

[12]  S. W. Heo, T. S. Choi, K. M. Park, Y. H. Ko, S. B. Kim, K. Kim, H. I. Kim, Anal. Chem. 2011, 83, 7916.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CqtrbP&md5=5fadc89726ec53a9c3b64c085be62e6bCAS | 21923148PubMed |

[13]  S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 15959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFalu7rI&md5=4d3417d4e46282ea5351352c1f40c21aCAS | 16277540PubMed |

[14]  I. Ghosh, W. M. Nau, Adv. Drug Deliv. Rev. 2012, 64, 764.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1yitrg%3D&md5=1368261de0c09c160a8e8794f1d8d1ecCAS | 22326487PubMed |

[15]  A. I. Day, J. G. Collins, Cucurbituril Receptors and Drug Delivery, in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds J. W. Steed, P. A. Gale) 2012, pp. 983–1000 (John Wiley & Sons Ltd: Chichester, UK). 10.1002/9780470661345.SMC056

[16]  S. Walker, R. Oun, F. J. McInnes, N. J. Wheate, Isr. J. Chem. 2011, 51, 616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOitLk%3D&md5=1241fee0968fc44f1456e028b0f2b61eCAS |

[17]  L. M. Heitmann, A. B. Taylor, P. J. Hart, A. R. Urbach, J. Am. Chem. Soc. 2006, 128, 12574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFaisLw%3D&md5=a098cb3d2533ea50836866057816e1c2CAS | 16984208PubMed |

[18]  K. A. Connors, Chem. Rev. 1997, 97, 1325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksV2kurs%3D&md5=e2e59b6104f642c2ab674e163209c7cbCAS | 11851454PubMed |

[19]  K. J. Palmer, R. N. Brogden, Drugs 1993, 46, 92.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FgvVGksw%3D%3D&md5=d66e82a906eb1a92447028853b152d15CAS | 7691511PubMed |

[20]  N. El-Enany, J. AOAC Int. 2003, 86, 209.
         | 1:CAS:528:DC%2BD3sXivFOjsrc%3D&md5=20c0938a946e3a1ab1e4111809f2727aCAS | 12723907PubMed |

[21]  N. El-Enany, Il Farmaco 2004, 59, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVylsQ%3D%3D&md5=f0bdf5d5b65ecea03a572da3793de53cCAS | 14751318PubMed |

[22]  M. R. Rouini, A. Mohajer, M. H. Tahami, J. Chromatogr. B 2003, 785, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVakt70%3D&md5=8dade055372f093e74f49f953c6a4903CAS |

[23]  S. M. Foroutan, A. Zarghi, A. Shafaati, A. Khoddam, J. Pharm. Biomed. Anal. 2006, 42, 513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1CisL8%3D&md5=3a6b2adb62edb87261aa2d4f9911c2a7CAS | 16797910PubMed |

[24]  C. Y. Kuo, S. M. Wu, J. Chromatogr. A 2005, 1088, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFShsLk%3D&md5=a673df44077870a0a6d7ae9840c3c346CAS | 16130741PubMed |

[25]  S. AbuRuz, J. Millership, J. McElnay, J. Chromatogr. B 2005, 817, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosF2itw%3D%3D&md5=19f41ec133c1e321c0c4cf78d330c0adCAS |

[26]  J. Shaodong, W. J. Lee, J. W. Ee, J. H. Park, S. W. Kwon, J. Lee, J. Pharm. Biomed. Anal. 2010, 51, 973.
         | Crossref | GoogleScholarGoogle Scholar | 20004074PubMed |

[27]  J. Krzek, J. Czekaj, M. Moniczewska, W. Rzeszutko, J. AOAC Int. 2001, 84, 1695.
         | 1:CAS:528:DC%2BD38XhtFGjtro%3D&md5=40cf07693605aefc7c3bed96a8123e2fCAS | 11767133PubMed |

[28]  N. M. El Kousy, Microchim. Acta 1998, 128, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtV2gtw%3D%3D&md5=d54a3cb21375805fa1a7ed359d83aa0cCAS |

[29]  J. Krzek, M. Dabrowska, U. Hubicka, JPC. J. Planar Chromatogr. Modern TLC 2001, 14, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVegt7Y%3D&md5=2c918f959d52b56d2007c8c1d0992986CAS |

[30]  X. Hu, Y. Zheng, J. Sun, G. Wang, H. Zhang, Chromatographia 2009, 69, 843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslGjtr8%3D&md5=1340c78483e48bb0f99155f6bf700b0fCAS |

[31]  G. Zhong, H. Bi, S. Zhou, X. Chen, M. Huang, J. Mass Spectrom. 2005, 40, 1462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OgtrnK&md5=9b451ee07ddfc2b1f2576786ce0861f7CAS | 16255063PubMed |

[32]  G. Ling, J. Sun, J. Tang, X. Xu, Y. Sun, Z. He, Anal. Lett. 2006, 39, 1381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmslaitbk%3D&md5=297a8fcb2a53cf257c53d38515f2d88aCAS |

[33]  V. Maier, J. Znaleziona, D. Jirovský, J. Skopalová, J. Petr, J. Ševčík, J. Chromatogr. A 2009, 1216, 4492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWns74%3D&md5=2318ac8ea6235a04bfb70a4a849d2c26CAS | 19344907PubMed |

[34]  B. Tang, L. Zhang, Y. Geng, Talanta 2005, 65, 769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFams77M&md5=83064c0e493fb69abc9a277f50728136CAS | 18969866PubMed |

[35]  Z. P. Wang, L. L. Shi, G. S. Chen, K. L. Cheng, Talanta 2000, 51, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslegsQ%3D%3D&md5=34354bb667f051fec3b58c8d8b7d0f16CAS | 18967862PubMed |

[36]  H. M. Abdel-Wadood, N. A. Mohamed, A. M. Mahmoud, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2008, 70, 564.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  K. A. Conners, Binding Constants: The Measurement of Molecular Complex Stability 1987 (John Wiley and Sons: New York, NY).

[38]  Z. Zhong, E. V. Anslyn, J. Am. Chem. Soc. 2002, 124, 9014.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFCqurg%3D&md5=fece082b845fb275f28396113f3ace83CAS | 12148981PubMed |

[39]  A. E. Hargrove, Z. Zhong, J. L. Sessler, E. V. Anslyn, New J. Chem. 2010, 34, 348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGnsb4%3D&md5=ee276aded0eda06d9ed7f7424524ab36CAS | 20539751PubMed |

[40]  L. Zhu, Z. Z. Zhong, E. V. Anslyn, J. Am. Chem. Soc. 2005, 127, 4260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVGis70%3D&md5=4cde571b2f94ffbdfe2e4bd86cc5d566CAS | 15783208PubMed |

[41]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=5be02d73b432a9ccf155dbb749241880CAS |

[42]  A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=2a3bc3989fac96c88d548336c5199bd8CAS | 9900728PubMed |

[43]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 03, revision C.02 2004 (Gaussian, Inc.: Wallingford, CT).

[44]  W. L. Mock, N. Y. Shih, J. Org. Chem. 1986, 51, 4440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVygur0%3D&md5=7663692912b85a3b434c1c8e862e0aafCAS |

[45]  C. Márquez, R. R. Hudgins, W. M. Nau, J. Am. Chem. Soc. 2004, 126, 5806.
         | Crossref | GoogleScholarGoogle Scholar | 15125673PubMed |

[46]  B. Holmes, R. C. Heel, R. N. Brogden, T. M. Speight, G. S. Avery, Drugs 1984, 27, 301.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3gslGqsQ%3D%3D&md5=f06638340650857f17e8696ea2a58255CAS | 6373223PubMed |

[47]  A. J. Krentz, C. J. Bailey, Drugs 2005, 65, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Grsbg%3D&md5=b44811f88f42ad7ea9faa67495b1112aCAS | 15669880PubMed |

[48]  State Pharmacopeia Committee of China, Pharmacopoeia of People’s Republic of China 2010, Vol. 2, p. 810 (China Medical Science Press: Beijing).