Chemoselective Activation Strategies of Amidic Carbonyls towards Nucleophilic Reagents
Vittorio Pace A B and Wolfgang Holzer A
+ Author Affiliations
- Author Affiliations
A Department of Drug and Natural Product Synthesis, University of Vienna, Althanstrasse 14, 1090 – Vienna, Austria.
B Corresponding author. Email: vpace@farm.ucm.es
Australian Journal of Chemistry 66(5) 507-510 https://doi.org/10.1071/CH13042
Submitted: 25 January 2013 Accepted: 13 March 2013 Published: 5 April 2013
Abstract
Important advancements have been made in recent years in the development of chemoselective additions of nucleophiles to well known inert amide carbonyls in the presence of multi-electrophilic substrates. Herein, we present the most relevant results showing how carbonyl amides can be chemoselectively functionalised in the presence of electrophilic functionalities such as Weinreb amides.
References
[1] N. A. Afagh, A. K. Yudin, Angew. Chem. Int. Ed. 2010, 49, 262.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsVyr&md5=006017cfef131795c0533fbfec412898CAS |
[2] (a) V. Grignard, C. R. Hebd. Seances Acad. Sci. 1900, 130, 1322.
| 1:CAS:528:DyaD28XpvVA%3D&md5=9b0959d5b3c4d42d365532d53cab0630CAS |
(b) For a historical perspective, see: H. B. Kagan, Angew. Chem. Int. Ed. 2012, 51, 7376.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. Seebach, Angew. Chem. Int. Ed. 2011, 50, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1alu7rI&md5=820019039d1d19fce1bfdcae45393b5fCAS |
[4] (a) S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XosFSitg%3D%3D&md5=e58ef66b56c5cd5ce272cf2920f7c3bcCAS |
(b) For a review, see: S. Balasubramaniam, I. S. Aidhen, Synthesis 2008, 3707.
(c) For a recent chemoselective application of Weinreb amides, see: V. Pace, W. Holzer, G. Verniest, A. R. Alcántara, N. De Kimpe, Adv. Synth. Catal. 2013, 355, 919.
| Crossref | GoogleScholarGoogle Scholar |
[5] K. Shirokane, Y. Kurosaki, T. Sato, N. Chida, Angew. Chem. Int. Ed. 2010, 49, 6369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLjN&md5=195767fe32c88a78c7bd3f90098a0fa4CAS |
[6] Y. Yanagita, H. Nakamura, K. Shirokane, Y. Kurosaki, T. Sato, N. Chida, Chem. – Eur. J. 2013, 19, 678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ogs73L&md5=1484c178da4689bdcc58fda1ff2d734cCAS | 23165728PubMed |
[7] (a) G. Vincent, R. Guillot, C. Kouklovsky, Angew. Chem. Int. Ed. 2011, 50, 1350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmu7g%3D&md5=6e9a768e093cf7b75cdd0c9a51dcd51aCAS |
(b) For other examples of sequential nucleophilic additions to amidic carbonyls, see: G. Bélanger, G. O’Brien, R. Larouche-Gauthier, Org. Lett. 2011, 13, 4268.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. W. Medley, M. Movassaghi, Angew. Chem. Int. Ed. 2012, 51, 4572.
| Crossref | GoogleScholarGoogle Scholar |
[8] Y. Oda, T. Sato, N. Chida, Org. Lett. 2012, 14, 950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVygsg%3D%3D&md5=32935332cc20f58c3bb1ed51dd11ab87CAS | 22260368PubMed |
[9] J. T. Spletstoser, J. M. White, A. R. Tunoori, G. I. Georg, J. Am. Chem. Soc. 2007, 129, 3408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFKqu70%3D&md5=bb013a53f5c6058a5f8890f5b2716df5CAS | 17315870PubMed |
[10] A. B. Charette, M. Grenon, Can. J. Chem. 2001, 79, 1694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFOmsA%3D%3D&md5=969e9fccb217d16608338ec444c86074CAS |
[11] G. Barbe, A. B. Charette, J. Am. Chem. Soc. 2008, 130, 18.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgurrE&md5=c5a6a7081a9f165a0fa73f5cbed50baaCAS | 18076177PubMed |
[12] G. Pelletier, W. S. Bechara, A. B. Charette, J. Am. Chem. Soc. 2010, 132, 12817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOnsrnM&md5=3ae7f80577c174841e2313ae8444a4a5CAS | 20735125PubMed |
[13] (a) W. S. Bechara, G. Pelletier, A. B. Charette, Nat. Chem. 2012, 4, 228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1eqtbk%3D&md5=b123bb3f779010e1c9fe29ffa7e81a80CAS | 22354438PubMed |
(b) After the publication of this work, an analogous approach based on organocerium chemistry was reported by Huang’s group: K.-J. Xiao, A.-E. Wang, Y.-H. Huang, P.-Q. Huang, Asian. J. Org. Chem. 2012, 1, 130.
[14] K.-J. Xiao, J.-M. Luo, K.-Y. Ye, Y. Wang, P.-Q. Huang, Angew. Chem. Int. Ed. 2010, 49, 3037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslSjsrY%3D&md5=decab1fd09e7298e9937d70e182b190bCAS |
[15] K.-J. Xiao, Y. Wang, K.-Y. Ye, P.-Q. Huang, Chem. – Eur. J. 2010, 16, 12792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyhur7F&md5=7e459f01c90f6c360dc18a5c750fdfa5CAS | 20938943PubMed |
[16] K.-J. Xiao, A.-E. Wang, P.-Q. Huang, Angew. Chem. Int. Ed. 2012, 51, 8314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeht77F&md5=e08426aa77799e2f9dfe8fa58292bba3CAS |