Rate Coefficients for Intramolecular Homolytic Substitution of Oxyacyl Radicals at Sulfur
Heather M. Aitken A B , Sonia M. Horvat A B , Michelle L. Coote A C , Ching Yeh Lin A C and Carl H. Schiesser A B DA ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Australia.
B School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic. 3010, Australia.
C Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
D Corresponding author. Email: carlhs@unimelb.edu.au
Australian Journal of Chemistry 66(3) 323-329 https://doi.org/10.1071/CH12477
Submitted: 19 October 2012 Accepted: 29 November 2012 Published: 18 January 2013
Abstract
It is predicted on the basis of ab initio and density functional calculations that intramolecular homolytic substitution of oxyacyl radicals at the sulfur atom in ω-alkylthio-substituted radicals do not involve hypervalent intermediates. With tert-butyl as the leaving radical, free energy barriers ΔG‡ (G3(MP2)-RAD) for these reactions range from 45.8 kJ mol–1 for the formation of the five-membered cyclic thiocarbonate (8) to 56.7 kJ mol–1 for the formation of the six-membered thiocarbonate (9). Rate coefficients in the order of 104–106 s–1 and 101–104 s–1 for the formation of 8 and 9, respectively, at 353.15 K in the gas phase are predicted at the G3(MP2)-RAD level of theory.
References
[1] A. L. J. Beckwith, C. H. Schiesser, Org. Biomol. Chem. 2011, 9, 1736.and references cited therein.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislOmt70%3D&md5=dbd7c5d58874f89bde641f59bc9504dcCAS |
[2] Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012 (John Wiley and Sons: Chichester).
[3] A. L. J. Beckwith, Tetrahedron 1981, 37, 3073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtVehtLY%3D&md5=5c7ba001026c37ed01869a944f8d2f30CAS |
[4] A complete list of references is impossible to provide. See: B. Giese, Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds 1986 (Pergamon Press: Oxford), and references cited therein.
[5] A. L. J. Beckwith, C. H. Schiesser, Tetrahedron 1985, 41, 3925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFKks78%3D&md5=89177426f8814b9e30ece94001789b14CAS |
[6] D. C. Spellmeyer, K. N. Houk, J. Org. Chem. 1987, 52, 959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtF2js7g%3D&md5=3aa49cb458e741aabeec143236cdde3cCAS |
[7] C. H. Schiesser, Chem. Commun. 2006, 4055.
| 1:CAS:528:DC%2BD28XhtVCiu7bJ&md5=d252588dd90b478c51fb551d1269dc80CAS |
[8] C. H. Schiesser, L. M. Wild, Tetrahedron 1996, 52, 13265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVaqsrs%3D&md5=850ad4d17d14bc07dab1dfe6d37eb9f0CAS |
[9] J. C. Walton, Acc. Chem. Res. 1998, 31, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht12lsrw%3D&md5=3f58a0544b231dd031f3b3567d32ca05CAS |
[10] S. H. Kyne, C. H. Schiesser, in Encyclopedia of Radicals in Chemistry, Biology and Materials Vol. 2 (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 629–654 (John Wiley and Sons: Chichester).
[11] J. Malmström, M. Jonsson, A. Cotgreave, L. Hammarström, M. Sjodin, L. Engman, J. Am. Chem. Soc. 2001, 123, 3434.
| Crossref | GoogleScholarGoogle Scholar |
[12] A. L. J. Beckwith, D. R. Boate, J. Chem. Soc. Chem. Commun. 1986, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVWqu7k%3D&md5=3a7c7000b4cfe621e4850fd1a2ecbeeaCAS |
[13] J. Coulomb, V. Certal, M.-H. Larraufie, C. Ollivier, J.-P. Corbet, G. Mignani, L. Fensterbank, E. Lacôte, M. Malacria, Chem. – Eur. J. 2009, 15, 10225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amt73J&md5=73a096778dbcf8155af85291239f1316CAS |
[14] C. H. Schiesser, H. Matsubara, I. Ritsner, U. Wille, Chem. Commun. 2006, 1067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFCksb0%3D&md5=353525eee4b9cf031e0c5b2dca69a5d6CAS |
[15] C. H. Schiesser, U. Wille, H. Matsubara, I. Ryu, Acc. Chem. Res. 2007, 40, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFartb4%3D&md5=21898d52df22cf1556f3b3769dfd7f12CAS |
[16] S. H. Kyne, C. H. Schiesser, H. Matsubara, J. Org. Chem. 2008, 73, 427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVemsbbL&md5=2a06c87b00a6440027959bedc7997f5eCAS |
[17] S. M. Horvat, C. H. Schiesser, New J. Chem. 2010, 34, 1692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyks70%3D&md5=a3bc6df33292c28565acf1a917d0759bCAS |
[18] I. Ryu, K. Matsu, S. Minakata, M. Komatsu, J. Am. Chem. Soc. 1998, 120, 5838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVajs7w%3D&md5=c5db235cd6d5942ac287457c605d79bdCAS |
[19] I. Ryu, K. Okuda, K. Nagahara, N. Kambe, M. Komatsu, N. Sonoda, J. Org. Chem. 1997, 62, 7550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFymt70%3D&md5=678505c1d29186150cf54b954bd21b7cCAS |
[20] S. M. Horvat, C. H. Schiesser, Tetrahedron 2012, 68, 10482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqu73P&md5=1c8e59d7860f986ce0a38912ca7b60c3CAS |
[21] S. H. Kyne, C. H. Schiesser, H. Matsubara, Org. Biomol. Chem. 2007, 5, 3938.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGnsr3E&md5=915c32b5bb6c7f7db7737ef74aa7f081CAS |
[22] M. A. Lucas, C. H. Schiesser, J. Org. Chem. 1998, 63, 3032.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12gsrg%3D&md5=134a74cbb8a66b33f07025f969d188c9CAS |
[23] P. A. Simakov, F. N. Martinez, J. H. Horner, M. Newcomb, J. Org. Chem. 1998, 63, 1226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVWktA%3D%3D&md5=9c95582566a1334cdf88da3514884568CAS |
[24] S. Lobachevsky, C. H. Schiesser, C. Lin, M. L. Coote, J. Phys. Chem. A 2008, 112, 13622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKisLrM&md5=9f08b179b1e22726c3be5c63033da265CAS |
[25] S. H. Kyne, C. Y. Lin, I. Ryu, M. L. Coote, C. H. Schiesser, Chem. Commun. 2010, 46, 6521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKltLbO&md5=7fac2348e7a8a33f7b5e62a05aa18639CAS |
[26] H. M. Aitken, A. N. Hancock, C. H. Schiesser, Chem. Commun. 2012, 48, 8326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSls73F&md5=dd846389ec5c5a7e5f32b9869a7c8facCAS |
[27] H. M. Aitken, S. M. Horvat, C. H. Schiesser, C. Y. Lin, M. L. Coote, Int. J. Chem. Kinet. 2012, 44, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2gtrjE&md5=6ffdd4d4d4731bc2e3bf23fe264c0a18CAS |
[28] P. E. Macdougall, H. M. Aitken, Y. Kavanagh, P. J. Scammells, S. H. Kyne, C. H. Schiesser, Chem. Commun. 2012, 48, 9126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajt7fF&md5=e96648a4fbafe4c989f14cb99672ff80CAS |
[29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1 2009 (Gaussian, Inc.: Wallingford, CT).
[30] H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, MOLPRO, Version 2009.1: A Package of Ab Initio Programs 2009 (University College Cardiff Consultants Limited: Cardiff).
[31] A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls12mu78%3D&md5=f80b371eb902130d812f96258e06fadfCAS |
[32] D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ensL0%3D&md5=4d72d77404d0d1849e24bed030f0f9faCAS |
[33] D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, J. Phys. Chem. 1996, 100, 12771.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1ansr8%3D&md5=acbd3b382643e978549e9d36b5b8ba79CAS |
[34] C. Y. Lin, E. I. Izgorodina, M. L. Coote, J. Phys. Chem. A 2008, 112, 1956.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Grs7Y%3D&md5=cdb7665f2d89c67c7905b985a91343d4CAS |
[35] C. H. Schiesser, L. M. Wild, J. Org. Chem. 1999, 64, 1131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1Kruw%3D%3D&md5=8a6038f42827fedfa828ea0b732e27efCAS |
[36] A. C. Neves, H. M. Aitken, S. H. Kyne, L. Fensterbank, E. Lacôte, M. Malacria, C. Ollivier, C. H. Schiesser, Tetrahedron 2012, 68, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFert73N&md5=ba2d7b7f4a67249e1c09dbd429a46498CAS |
[37] M. L. Coote, C. Y. Lin, A. L. J. Beckwith, A. A. Zavitsas, Phys. Chem. Chem. Phys. 2010, 12, 9597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVant7%2FN&md5=91f47d6e2f8d86b80c0c6a6472cb5236CAS |
[38] A. L. J. Beckwith, S. A. M. Duggan, J. Chem. Soc., Perkin Trans. 2 1994, 1509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVSqtA%3D%3D&md5=1875bcb8f5a442ca3928277d2e007a8bCAS |
[39] J. A. Franz, D. H. Roberts, K. F. Ferris, J. Org. Chem. 1987, 52, 2256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFehsbs%3D&md5=7263b11dd4dfe7a532b60e538b7cec2bCAS |
[40] D. Griller, K. U. Ingold, P. J. Krusic, H. Fischer, J. Am. Chem. Soc. 1978, 100, 6750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlslGm&md5=c4b8f223b4fcb1e475e8c00868183f68CAS |
[41] T. Morihovitis, C. H. Schiesser, M. A. Skidmore, J. Chem. Soc., Perkin Trans. 2 1999, 2041.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFKltr4%3D&md5=fdf769f8182a34f4ecf8a8e5ddda31feCAS |