Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Rate Coefficients for Intramolecular Homolytic Substitution of Oxyacyl Radicals at Sulfur

Heather M. Aitken A B , Sonia M. Horvat A B , Michelle L. Coote A C , Ching Yeh Lin A C and Carl H. Schiesser A B D
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Australia.

B School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic. 3010, Australia.

C Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

D Corresponding author. Email: carlhs@unimelb.edu.au

Australian Journal of Chemistry 66(3) 323-329 https://doi.org/10.1071/CH12477
Submitted: 19 October 2012  Accepted: 29 November 2012   Published: 18 January 2013

Abstract

It is predicted on the basis of ab initio and density functional calculations that intramolecular homolytic substitution of oxyacyl radicals at the sulfur atom in ω-alkylthio-substituted radicals do not involve hypervalent intermediates. With tert-butyl as the leaving radical, free energy barriers ΔG (G3(MP2)-RAD) for these reactions range from 45.8 kJ mol–1 for the formation of the five-membered cyclic thiocarbonate (8) to 56.7 kJ mol–1 for the formation of the six-membered thiocarbonate (9). Rate coefficients in the order of 104–106 s–1 and 101–104 s–1 for the formation of 8 and 9, respectively, at 353.15 K in the gas phase are predicted at the G3(MP2)-RAD level of theory.


References

[1]  A. L. J. Beckwith, C. H. Schiesser, Org. Biomol. Chem. 2011, 9, 1736.and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislOmt70%3D&md5=dbd7c5d58874f89bde641f59bc9504dcCAS |

[2]  Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012 (John Wiley and Sons: Chichester).

[3]  A. L. J. Beckwith, Tetrahedron 1981, 37, 3073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtVehtLY%3D&md5=5c7ba001026c37ed01869a944f8d2f30CAS |

[4]  A complete list of references is impossible to provide. See: B. Giese, Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds 1986 (Pergamon Press: Oxford), and references cited therein.

[5]  A. L. J. Beckwith, C. H. Schiesser, Tetrahedron 1985, 41, 3925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFKks78%3D&md5=89177426f8814b9e30ece94001789b14CAS |

[6]  D. C. Spellmeyer, K. N. Houk, J. Org. Chem. 1987, 52, 959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtF2js7g%3D&md5=3aa49cb458e741aabeec143236cdde3cCAS |

[7]  C. H. Schiesser, Chem. Commun. 2006, 4055.
         | 1:CAS:528:DC%2BD28XhtVCiu7bJ&md5=d252588dd90b478c51fb551d1269dc80CAS |

[8]  C. H. Schiesser, L. M. Wild, Tetrahedron 1996, 52, 13265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVaqsrs%3D&md5=850ad4d17d14bc07dab1dfe6d37eb9f0CAS |

[9]  J. C. Walton, Acc. Chem. Res. 1998, 31, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht12lsrw%3D&md5=3f58a0544b231dd031f3b3567d32ca05CAS |

[10]  S. H. Kyne, C. H. Schiesser, in Encyclopedia of Radicals in Chemistry, Biology and Materials Vol. 2 (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 629–654 (John Wiley and Sons: Chichester).

[11]  J. Malmström, M. Jonsson, A. Cotgreave, L. Hammarström, M. Sjodin, L. Engman, J. Am. Chem. Soc. 2001, 123, 3434.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. L. J. Beckwith, D. R. Boate, J. Chem. Soc. Chem. Commun. 1986, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVWqu7k%3D&md5=3a7c7000b4cfe621e4850fd1a2ecbeeaCAS |

[13]  J. Coulomb, V. Certal, M.-H. Larraufie, C. Ollivier, J.-P. Corbet, G. Mignani, L. Fensterbank, E. Lacôte, M. Malacria, Chem. – Eur. J. 2009, 15, 10225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amt73J&md5=73a096778dbcf8155af85291239f1316CAS |

[14]  C. H. Schiesser, H. Matsubara, I. Ritsner, U. Wille, Chem. Commun. 2006, 1067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFCksb0%3D&md5=353525eee4b9cf031e0c5b2dca69a5d6CAS |

[15]  C. H. Schiesser, U. Wille, H. Matsubara, I. Ryu, Acc. Chem. Res. 2007, 40, 303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFartb4%3D&md5=21898d52df22cf1556f3b3769dfd7f12CAS |

[16]  S. H. Kyne, C. H. Schiesser, H. Matsubara, J. Org. Chem. 2008, 73, 427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVemsbbL&md5=2a06c87b00a6440027959bedc7997f5eCAS |

[17]  S. M. Horvat, C. H. Schiesser, New J. Chem. 2010, 34, 1692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyks70%3D&md5=a3bc6df33292c28565acf1a917d0759bCAS |

[18]  I. Ryu, K. Matsu, S. Minakata, M. Komatsu, J. Am. Chem. Soc. 1998, 120, 5838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVajs7w%3D&md5=c5db235cd6d5942ac287457c605d79bdCAS |

[19]  I. Ryu, K. Okuda, K. Nagahara, N. Kambe, M. Komatsu, N. Sonoda, J. Org. Chem. 1997, 62, 7550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFymt70%3D&md5=678505c1d29186150cf54b954bd21b7cCAS |

[20]  S. M. Horvat, C. H. Schiesser, Tetrahedron 2012, 68, 10482.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqu73P&md5=1c8e59d7860f986ce0a38912ca7b60c3CAS |

[21]  S. H. Kyne, C. H. Schiesser, H. Matsubara, Org. Biomol. Chem. 2007, 5, 3938.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGnsr3E&md5=915c32b5bb6c7f7db7737ef74aa7f081CAS |

[22]  M. A. Lucas, C. H. Schiesser, J. Org. Chem. 1998, 63, 3032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12gsrg%3D&md5=134a74cbb8a66b33f07025f969d188c9CAS |

[23]  P. A. Simakov, F. N. Martinez, J. H. Horner, M. Newcomb, J. Org. Chem. 1998, 63, 1226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVWktA%3D%3D&md5=9c95582566a1334cdf88da3514884568CAS |

[24]  S. Lobachevsky, C. H. Schiesser, C. Lin, M. L. Coote, J. Phys. Chem. A 2008, 112, 13622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKisLrM&md5=9f08b179b1e22726c3be5c63033da265CAS |

[25]  S. H. Kyne, C. Y. Lin, I. Ryu, M. L. Coote, C. H. Schiesser, Chem. Commun. 2010, 46, 6521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKltLbO&md5=7fac2348e7a8a33f7b5e62a05aa18639CAS |

[26]  H. M. Aitken, A. N. Hancock, C. H. Schiesser, Chem. Commun. 2012, 48, 8326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSls73F&md5=dd846389ec5c5a7e5f32b9869a7c8facCAS |

[27]  H. M. Aitken, S. M. Horvat, C. H. Schiesser, C. Y. Lin, M. L. Coote, Int. J. Chem. Kinet. 2012, 44, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2gtrjE&md5=6ffdd4d4d4731bc2e3bf23fe264c0a18CAS |

[28]  P. E. Macdougall, H. M. Aitken, Y. Kavanagh, P. J. Scammells, S. H. Kyne, C. H. Schiesser, Chem. Commun. 2012, 48, 9126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajt7fF&md5=e96648a4fbafe4c989f14cb99672ff80CAS |

[29]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1 2009 (Gaussian, Inc.: Wallingford, CT).

[30]  H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, MOLPRO, Version 2009.1: A Package of Ab Initio Programs 2009 (University College Cardiff Consultants Limited: Cardiff).

[31]  A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls12mu78%3D&md5=f80b371eb902130d812f96258e06fadfCAS |

[32]  D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ensL0%3D&md5=4d72d77404d0d1849e24bed030f0f9faCAS |

[33]  D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, J. Phys. Chem. 1996, 100, 12771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1ansr8%3D&md5=acbd3b382643e978549e9d36b5b8ba79CAS |

[34]  C. Y. Lin, E. I. Izgorodina, M. L. Coote, J. Phys. Chem. A 2008, 112, 1956.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Grs7Y%3D&md5=cdb7665f2d89c67c7905b985a91343d4CAS |

[35]  C. H. Schiesser, L. M. Wild, J. Org. Chem. 1999, 64, 1131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1Kruw%3D%3D&md5=8a6038f42827fedfa828ea0b732e27efCAS |

[36]  A. C. Neves, H. M. Aitken, S. H. Kyne, L. Fensterbank, E. Lacôte, M. Malacria, C. Ollivier, C. H. Schiesser, Tetrahedron 2012, 68, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFert73N&md5=ba2d7b7f4a67249e1c09dbd429a46498CAS |

[37]  M. L. Coote, C. Y. Lin, A. L. J. Beckwith, A. A. Zavitsas, Phys. Chem. Chem. Phys. 2010, 12, 9597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVant7%2FN&md5=91f47d6e2f8d86b80c0c6a6472cb5236CAS |

[38]  A. L. J. Beckwith, S. A. M. Duggan, J. Chem. Soc., Perkin Trans. 2 1994, 1509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVSqtA%3D%3D&md5=1875bcb8f5a442ca3928277d2e007a8bCAS |

[39]  J. A. Franz, D. H. Roberts, K. F. Ferris, J. Org. Chem. 1987, 52, 2256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFehsbs%3D&md5=7263b11dd4dfe7a532b60e538b7cec2bCAS |

[40]  D. Griller, K. U. Ingold, P. J. Krusic, H. Fischer, J. Am. Chem. Soc. 1978, 100, 6750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlslGm&md5=c4b8f223b4fcb1e475e8c00868183f68CAS |

[41]  T. Morihovitis, C. H. Schiesser, M. A. Skidmore, J. Chem. Soc., Perkin Trans. 2 1999, 2041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFKltr4%3D&md5=fdf769f8182a34f4ecf8a8e5ddda31feCAS |