Flexibility in the Self-Assembly of Silver Complexes: Coordination Polymers from Multi-Armed Pyridylmethyleneoxy Ligands
Peter J. Steel A and Christopher M. Fitchett A BA Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
B Corresponding author. Email: chris.fitchett@canterbury.ac.nz
Australian Journal of Chemistry 66(4) 443-451 https://doi.org/10.1071/CH12464
Submitted: 10 October 2012 Accepted: 9 December 2012 Published: 22 January 2013
Abstract
The syntheses of new silver complexes of five isomeric bis(pyridylmethyleneoxy)benzenes, differing in the position of substitution on the benzene and pyridine rings, and three isomeric 1,3,5-tris(pyridylmethyleneoxy)benzenes, differing in the position of substitution on the pyridine ring, are described. The structures of six of these complexes were characterised using X-ray crystallography, showing the formation of coordination polymers for 3-pyridyl- and 4-pyridyl-armed ligands and discrete complexes for 2-pyridyl-armed ligands. The precise nature of the structure was further determined by the relative orientation of the pyridine rings in each case.
References
[1] (a) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOnsrbP&md5=a84a0d11b90f58099d5fdb5776c875beCAS |
(b) M. W. Hosseini, Chem. Commun. 2005, 5825.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. K. Langley, N. F. Chilton, B. Moubaraki, K. S. Murray, Dalton Trans. 2011, 12201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKgs77E&md5=ab0a66c568b48435f9836cc715d8e2ceCAS |
(b) A. M. Kutasi, D. R. Turner, B. Moubaraki, S. R. Batten, K. S. Murray, Dalton Trans. 2011, 12358.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Y. Kataoka, K. Sato, Y. Miyazaki, Y. Suzuki, H. Tanaka, Y. Kitagawa, T. Kawakami, M. Okumura, W. Mori, Chem. Lett. 2010, 39, 358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFWmtbw%3D&md5=5823cc6e4a16869c2ec95a8f78adc197CAS |
(b) A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) L. Yu, Z. Wang, J. Wu, S. Tu, K. Ding, Angew. Chem. Int. Ed. 2010, 49, 3627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFWisLs%3D&md5=0329e21e00a38cd17f2d1683cf6b608eCAS |
(b) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) Y.-B. Zhang, H.-L. Zhou, R.-B. Lin, C. Zhang, J.-B. Lin, J.-P. Zhang, X.-M. Chen, Nat. Commun. 2012, 3, 1654/1.
| 1:CAS:528:DC%2BC38XltFSgs70%3D&md5=7d3a66989608ebaa7539952b7f1dc379CAS |
(b) L. J. Murray, M. Dinca, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ksbfO&md5=da07cff6d6da3bb5c319ad2de1f1ef80CAS |
(b) N. N. Adarsh, P. Dastidar, Chem. Soc. Rev. 2012, 41, 3039.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. R. Andres, U. S. Schubert, Adv. Mater. 2004, 16, 1043.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) P. J. Steel, C. M. Fitchett, Coord. Chem. Rev. 2008, 252, 990.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGgtbk%3D&md5=155cdfc53dc9afb7016b3b520878c321CAS |
(b) M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine, J.-M. Lehn, Angew. Chem. Int. Ed. 2004, 43, 3644.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. Burgess, P. J. Steel, Coord. Chem. Rev. 2011, 255, 2094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1CisLs%3D&md5=0b50a411023579462b7ba1580e84e801CAS |
(b) J. R. A. Cottam, P. J. Steel, Tetrahedron 2009, 65, 7948.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. M. Fitchett, P. J. Steel, Inorg. Chem. Commun. 2007, 10, 1297.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. J. Steel, Acc. Chem. Res. 2005, 38, 243.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. A. McMorran, P. J. Steel, Angew. Chem. Int. Ed. 1998, 37, 3295.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) P. Thanasekaran, C.-C. Lee, K.-L. Lu, Acc. Chem. Res. 2012, 45, 1403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWgu7w%3D&md5=249ec649852e42457ad209804bfe2503CAS |
(b) F. Dai, J. Dou, H. He, X. Zhao, D. Sun, Inorg. Chem. 2010, 49, 4117.
| Crossref | GoogleScholarGoogle Scholar |
(c) T.-F. Liu, J. Lu, R. Cao, CrystEngComm 2010, 12, 660.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. A. Smith, J. G. Collins, F. R. Keene, Metal Complex–DNA Interactions 2009, 319.
(e) T. Basu, H. A. Sparkes, M. K. Bhunia, R. Mondal, Cryst. Growth Des. 2009, 9, 3488.
| Crossref | GoogleScholarGoogle Scholar |
(f) X.-L. Wang, C. Qin, E.-B. Wang, L. Xu, Z.-M. Su, C.-W. Hu, Angew. Chem. Int. Ed. 2004, 43, 5036.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) M. R. A. Al-Mandhary, C. M. Fitchett, P. J. Steel, Aust. J. Chem. 2006, 59, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFSrtrs%3D&md5=a640166812fa272695f679f2a6e4180aCAS |
(b) M. R. A. Al-Mandhary, P. J. Steel, Aust. J. Chem. 2002, 55, 705.
| Crossref | GoogleScholarGoogle Scholar |
[11] B. J. O’Keefe, P. J. Steel, CrystEngComm 2007, 9, 222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFehtbg%3D&md5=20215717a3ddc43603b5d4da428087b7CAS |
[12] (a) C. M. Hartshorn, P. J. Steel, Chem. Commun. 1997, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFOrtLo%3D&md5=47000b919b7d589dbfc105caeccea959CAS |
(b) C. M. Hartshorn, P. J. Steel, Angew. Chem. Int. Ed. 1996, 35, 2655.
| Crossref | GoogleScholarGoogle Scholar |
[13] C. Richardson, P. J. Steel, Inorg. Chem. Commun. 1998, 1, 260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVygsL8%3D&md5=4d162396f7abea141c87a72130eb0fd6CAS |
[14] J. Fan, Y. Wang, A. J. Blake, C. Wilson, E. S. Davies, A. N. Khlobystov, M. Shroder, Angew. Chem. Int. Ed. 2007, 46, 8013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kiu7vJ&md5=ad51658c65f9f7656107b7912ab370edCAS |
[15] (a) R. P. Feazell, C. E. Carson, K. K. Klausmeyer, Inorg. Chem. 2006, 45, 935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlensrnP&md5=b0b1f7aa91144637e3077ef1c52ead4aCAS |
(b) D. A. McMorran, Inorg. Chem. 2008, 47, 592.
| Crossref | GoogleScholarGoogle Scholar |
[16] J. L. Gulbransen, C. M. Fitchett, CrystEngComm 2012, 14, 5394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWiu7rJ&md5=4ba0f38a94dd6d27a02b254ec802c462CAS |
[17] C. M. Hartshorn, P. J. Steel, Inorg. Chem. 1996, 35, 6902.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Gnsrc%3D&md5=a4aff06814ecc0bf3f09d4bd70721bb1CAS |
[18] M. Oh, C. L. Stern, C. A. Mirkin, Inorg. Chem. 2005, 44, 2647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFegu7o%3D&md5=534482cfc726853f37c41134066dae6cCAS |
[19] G. Wu, X.-F. Wang, T.-a. Okamura, M. Chen, W.-Y. Sun, N. Ueyama, J. Solid State Chem. 2010, 183, 2174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCgsrfK&md5=58fb6f1d16642b82b3b3dff7e8ad54dcCAS |
[20] L.-P. Zhang, T. C. W. Mak, Polyhedron 2003, 22, 2787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Cnt70%3D&md5=74ef934fbc060a01486387ad7f53f201CAS |
[21] H. Hou, Y. Fan, L. Zhang, C. Du, Y. Zhu, Inorg. Chem. Commun. 2001, 4, 168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFaju74%3D&md5=2b90dbf9321580cd666fcb7b2dad763cCAS |
[22] J. England, R. Gondhia, L. Bigorra-Lopez, A. R. Petersen, A. J. P. White, G. J. P. Britovsek, Dalton Trans. 2009, 5319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOltLY%3D&md5=a6e490750c62b756e916a0960a29b03cCAS |
[23] G. Wu, X.-F. Wang, T.-A. Okamura, W.-Y. Sun, N. Ueyama, Inorg. Chem. 2006, 45, 8523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVygur8%3D&md5=c70653462bd1c1dc721e3335b7a535e7CAS |
[24] D. A. McMorran, P. J. Steel, J. Chem. Soc., Dalton Trans. 2002, 3321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFOhtLo%3D&md5=e4cb506cdde3a82226c4f4b0e072c67fCAS |
[25] C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVShur8%3D&md5=8d07b95847a76a3e0648856ba877e0e3CAS |
[26] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=b78ccfb7bc6298500d4f04a6db47751aCAS |
[27] B. F. Hoskins, R. Robson, D. A. Slizys, J. Am. Chem. Soc. 1997, 119, 2952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFyis78%3D&md5=947965c3e2607cc6b48d5c5fed709344CAS |
[28] B. F. Hoskins, R. Robson, D. A. Slizys, Angew. Chem. Int. Ed. 1997, 36, 2336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1KktLo%3D&md5=8dcf51f0a76f44cff1fddc5028429c2eCAS |
[29] M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, W.-S. Li, M. Schroder, Cryst. Eng. 1999, 2, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1arug%3D%3D&md5=6da84aa84484c7e9ae7456f34818d4b9CAS |
[30] SAINT+ 1997–1999 (Bruker-AXS: Madison, WI).
[31] SADABS 1998 (University of Göttingen: Göttingen, Germany).
[32] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
| 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=c16dcfe329fce2375df65b1474a83185CAS |
[33] SHELX-97 1997 (University of Göttingen: Göttingen, Germany).