Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Visible Light-Initiated Preparation of Functionalized Polystyrene Monoliths for Flow Chemistry

Farhan R. Bou-Hamdan A , Kathleen Krüger A , Klaus Tauer A , D. Tyler McQuade A C D and Peter H. Seeberger A B
+ Author Affiliations
- Author Affiliations

A Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1, 14476 Potsdam, Germany.

B Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22, 14195 Berlin, Germany.

C Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.

D Corresponding author. Email: mcquade@chem.fsu.edu

Australian Journal of Chemistry 66(2) 213-217 https://doi.org/10.1071/CH12405
Submitted: 31 August 2012  Accepted: 4 October 2012   Published: 2 November 2012

Abstract

Styrenic monoliths are produced using a novel visible light-initiated method. Monoliths with varying pore sizes are produced using 1-dodecanol and 1-dodecanol/THF mixtures and it was demonstrated that the more volatile i-PrOH can replace 1-dodecanol while still providing the same porogenic properties. In addition, the visible light-initiation protocol enables the facile incorporation of monomers that are incompatible with thermal or UV-initiated monolith formation methods. In particular, a reactive N-hydroxysuccinimidyl (NHS)-ester can be incorporated into the monolith and then subsequently used as an attachment point for a catalyst. Lastly, we demonstrate that the functionalized monolith supports acylation reactions well and that the loading of the catalyst impacts the reaction rate.


References

[1]  F. Svec, J. Chromatogr. A. 2010, 1217, 902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlSqsA%3D%3D&md5=339546153d9221722d7db5c2f3f44750CAS |

[2]  M. R. Buchmeiser, Polymer 2007, 48, 2187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVaht7Y%3D&md5=4d74b2541acba95417bb81cf7e870a4fCAS |

[3]  A. Sachse, A. Galarneau, B. Coq, F. Fajula, New J. Chem. 2011, 35, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSrsbg%3D&md5=e13c407b46ef08f6af2dd36fd6c877bcCAS |

[4]  C. Viklund, E. Pontén, B. Glad, K. Irgum, P. Horsted, F. Svec, Chem. Mater. 1997, 9, 463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntF2hsA%3D%3D&md5=ba3563f70c6b044277427c3e25339764CAS |

[5]  Z. Walsh, P. A. Levkin, V. Jain, B. Pauli, F. Svec, M. Macka, J. Sep. Sci. 2010, 33, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFakur8%3D&md5=7d3c18a633c4eab9561beef5410fd0b6CAS |

[6]  Z. Walsh, S. Abele, B. Lawless, D. Heger, P. Klan, M. C. Breadmore, B. Paull, M. Macka, Chem. Comm. 2008, 6504.
         | 1:CAS:528:DC%2BD1cXhsVKntbzE&md5=8eeb4c549a23e4e883fe4dd4ca697094CAS |

[7]  M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, C. D. Smith, Org. Biomol. Chem. 2008, 6, 1587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFCqt7w%3D&md5=630b8f4dcde61a132fcbc71abbd4eed5CAS |

[8]  N. Nikbin, M. Ladlow, S. V. Ley, Org. Process Res. Dev. 2007, 11, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFKntb0%3D&md5=2eba37202769293128c9fb786f20d507CAS |

[9]  C. J. Smith, C. D. Smith, N. Nikbin, S. V. Ley, I. R. Baxendale, Org. Biomol. Chem. 2011, 9, 1927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislOmt7c%3D&md5=590c12c1d41796e0cc3393ec93902635CAS |

[10]  M. E. Buck, D. M. Lynn, Polym. Chem. 2012, 3, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjsbrK&md5=baa998cf0c00081d310746c6fb05c37fCAS |

[11]  Y. Xie, X. Yang, J. Pu, Y. Zhao, Y. Zhang, G. Xie, J. Zheng, H. Yuan, F. Liao, Spectrochim. Acta A 2010, 77, 869.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  P. Laurino, H. F. Hernandez, J. Bräuer, K. Krüger, H. Grützmacher, K. Tauer, P. H. Seeberger, Macromol. Rapid Commun. 2012,
         | Crossref | GoogleScholarGoogle Scholar |

[13]  F. R. Bou-Hamdan, P. H. Seeberger, Chem. Sci. 2012, 3, 1612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKrt70%3D&md5=a2fde9f78547dcbed8680508d9cd1b8cCAS |

[14]  S. J. Pierre, J. C. Thies, A. Dureault, N. R. Cameron, J. C. M. van Hest, N. Carette, T. Michon, R. Weberskirch, Adv. Mater. 2006, 18, 1822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktrk%3D&md5=077cbdb7b914b433a74d2a38fb7699f1CAS |

[15]  G. Odian, Principles of Polymerization 2004, 4th edn (Wiley-Interscience: Hoboken, NJ).

[16]  E. Airiau, N. Girard, A. Mann, J. Salvadori, M. Taddei, Org. Lett. 2009, 11, 5314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWmtbvE&md5=169e1793044301e51a14dbc356bfcae6CAS |

[17]  J. R. Capadona, T. A. Petrie, K. P. Fears, R. A. Latour, D. M. Collard, A. J. García, Adv. Mater. 2005, 17, 2604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cgt7jI&md5=7a4526d5923efa9ee5c6cb0059a99eb1CAS |

[18]  17 W PAR 38 cold white LED lamps, illumination angle 120°, Best-Nr. 574897 – 62 from Conrad.