InCl3 Catalysed One-Pot Synthesis of Substituted Pyrroles and 2-Pyrones
Sanjit K. Mahato A C , Jayaraman Vinayagam A C , Sumit Dey A B , Ajay K. Timiri A , Sourav Chatterjee A and Parasuraman Jaisankar A DA Department of Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
B Current address: Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
C These two authors contributed equally to this work.
D Corresponding author. Email: jaisankar@iicb.res.in
Australian Journal of Chemistry 66(2) 241-251 https://doi.org/10.1071/CH12359
Submitted: 31 July 2012 Accepted: 24 October 2012 Published: 4 December 2012
Abstract
An efficient InCl3 catalysed one-pot strategy has been developed for the synthesis of tetra-substituted pyrroles and tri-substituted 2-pyrones in very good yields. Tetra-substituted pyrroles were prepared from 1,4-enediones and β-dicarbonyls employing NH4OAc as a nitrogen source, through a combination of Michael addition and Paal–Knorr methods. Tri-substituted 2-pyrones were synthesised from 1,4-ynediones and appropriate β-dicarbonyls using a sequential Michael addition and 6-exo-trig cyclisation.
References
[1] (a) T. P. Toube, in Pyrroles Part II: The Synthesis, Reactivity and Physical Properties of Substituted Pyrroles (Ed. R. A. Jones) 1992, Vol. 48, Ch. 1, pp. 1–129 (Wiley: New York, NY).(b) R. J. Sundberg, in Comprehensive Heterocyclic Chemistry II (Ed. C. W. Bird) 1996, Vol. 2, Ch. 2.03, pp. 119–206 (Pergamon Press: Oxford).
(c) T. L. Gilchrist, Heterocyclic Chemistry 1997, 3rd edn (Addison-Wesley Longman: Essex).
(d) J. A. Joule, K. Mills, in Heterocyclic Chemistry (Ed. M. A. Malden) 2000, 4th edn, Ch. 13, pp. 237–266 (Blackwell Science: Oxford).
[2] (a) H. Fan, J. Peng, M. T. Hamann, J.-F. Hu, Chem. Rev. 2008, 108, 264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCrsLvO&md5=7551528e70a3abefa1d9ec186129d276CAS |
(b) G. W. Gribble, in Comprehensive Heterocyclic Chemistry II (Eds A. R. Katritzky, C. W. Rees, E. F. Scriven) 1996, Vol. 2, Ch, 2.04, pp. 207–257 (Pergamon Press: Oxford).
(c) A. Fürstner, Angew. Chem. Int. Ed. 2003, 42, 3582.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) M. V. Raimondi, S. Cascioferro, D. Schillaci, S. Petruso, Eur. J. Med. Chem. 2006, 41, 1439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlagsbnE&md5=833858332a1726e79762ab7c8bb9072aCAS |
(b) D. F. Shi, R. T. Wheelhouse, D. Sun, L. H. Hurley, J. Med. Chem. 2001, 44, 4509.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Onnis, A. De Log, M. T. Cocco, R. Fadda, R. Meleddu, Eur. J. Med. Chem. 2009, 44, 1288.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. N. Obame, C. Plin-Mercier, R. Assaly, R. Zini, J. L. Dubois-Randé, A. Berdeaux, D. Morin, J. Pharmacol. Exp. Ther. 2008, 326, 252.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. F. Caputo, R. E. Caputo, J. M. Brand, J. Chem. Ecol. 1979, 5, 273.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Zhao, Y. Li, X. Ou, P. Zhang, Z. Huang, F. Bi, R. Huang, Q. Wang, J. Agric. Food Chem. 2008, 56, 10176.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) For recent applications of the Knorr reaction in pyrrole synthesis, see: A. Alberola, A. G. Ortega, M. L. Sadaba, C. Sanudo, Tetrahedron 1999, 55, 6555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVyku78%3D&md5=65c8797e0a1865774ab764f4cea61704CAS |
(b) A. J. Castro, D. D. Giannini, W. F. Greenlee, J. Org. Chem. 1970, 35, 2815.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) For recent applications of the Hantzsch reaction in pyrrole synthesis, see: D. Hong, Y. Zhu, Y. Li, X. Lin, P. Lu, Y. Wang, Org. Lett. 2011, 13, 4668. and references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSrtL3M&md5=3c8aacef6223ab687cda16fde058d6ebCAS |
(b) V. S. Matiychuk, R. L. Martyak, N. D. Obushak, Y. V. Ostapiuk, N. I. Pidlypnyi, Chem. Heterocycl. Comp. 2004, 40, 1218.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Palacios, D. Aparico, J. M. de los Santos, J. Vicario, Tetrahedron 2001, 57, 1961.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) For recent applications of the Paal–Knorr reaction in pyrrole synthesis, see: A. R. Bharadwaj, K. A. Scheidt, Org. Lett. 2004, 6, 2465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1aqs7c%3D&md5=a2acbeb40908d0effffc51779d1359c8CAS |
(b) G. Minetto, L. F. Raveglia, M. Taddei, Org. Lett. 2004, 6, 389.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. K. Banik, S. Samajdar, I. J. Banik, J. Org. Chem. 2004, 69, 213.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. X. Yu, P. W. Quesne, Tetrahedron Lett. 1995, 36, 6205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvVKhurg%3D&md5=34e7a5c02d759fd4c6b149c045f77c4bCAS |
[8] T. Wang, X. Chen, L. Chen, Z. Zhan, Org. Lett. 2011, 13, 3324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1agtr4%3D&md5=182121f85c37bd6b6a4a3400860c4baaCAS |
[9] W. Liu, H. Jiang, L. Huang, Org. Lett. 2010, 12, 312.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCltrzN&md5=01f9ebe1c74564c67f286787871404c2CAS |
[10] B. K. Banik, M. Renteria, S. K. Dasgupta, Tetrahedron Lett. 2005, 46, 2643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVCgurw%3D&md5=ee60b960f716fe88f9469a8a85401c34CAS |
[11] M. Yoshida, Y. Maeyama, M. Al-Amin, K. Shishido, J. Org. Chem. 2011, 76, 5813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKisbY%3D&md5=b43e5cfa76ae00154990bd4a4233f69dCAS |
[12] B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitL4%3D&md5=93963cb23a3efc4c72a939be6d2029b8CAS |
[13] J. Chen, H. Wu, Z. Zheng, C. Jin, X. Zhang, W. Su, Tetrahedron Lett. 2006, 47, 5383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVOqtLg%3D&md5=ed54067a530d11489ebc43d8408a4a0dCAS |
[14] (a) J. S. Yadav, B. V. Subba Reddy, T. S. Rao, R. Narender, M. K. Gupta, J. Mol. Catal. Chem. 2007, 278, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWjtrnK&md5=fa6f3198ee268d37c509ab6dae7e0adaCAS |
(b) O. A. Attanasi, S. Berretta, L. D. Crescentini, G. Favi, G. Giorgi, F. Mantellini, Adv. Synth. Catal. 2009, 351, 715.and references cited therein.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Maiti, S. Biswas, U. Jana, J. Org. Chem. 2010, 75, 1674.and references cited therein
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) For catalyst and solvent free multi-component syntheses of pyrroles, see: O. A. Attanasi, G. Favi, F. Mantellini, G. Moscatelli, S. Santeusanio, J. Org. Chem. 2011, 76, 2860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVSitL4%3D&md5=752bef005a9dd878fa313bc967fd0d18CAS |
(b) L. V. Frolova, N. M. Evdokimov, K. Hayden, I. Malik, S. Rogelj, A. Kornienko, I. V. Magedov, Org. Lett. 2011, 13, 1118.
| Crossref | GoogleScholarGoogle Scholar |
(c) For ionic-liquid mediated syntheses of pyrroles, see: B. Wang, Y. Gu, C. Luo, T. Yang, L. Yang, J. Suo, Tetrahedron Lett. 2004, 45, 3417.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) G. Balme, Angew. Chem. Int. Ed. 2004, 43, 6238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWrt7fE&md5=d1dc6a38aed676b1a58a284f43f3eaf7CAS |
(b) V. Nair, A. U. Vinod, C. Rajesh, J. Org. Chem. 2001, 66, 4427.
| Crossref | GoogleScholarGoogle Scholar |
(c) For ionic-liquid mediated syntheses of pyrroles, see: D. Tejedor, D. Gonzalez-Cruz, F. Garcia-Tellado, J. J. Marrero-Tellado, M. L. Rodriguez, J. Am. Chem. Soc. 2004, 126, 8390.
| Crossref | GoogleScholarGoogle Scholar |
[17] P. J. Brogden, C. D. Gabbutt, J. D. Hepworth, in Comprehensive Heterocyclic Chemistry (Eds A. R. Katritzky, C. W. Rees) 1984, Vol. 3, Part 2B, Ch. 2.22, pp. 573–645 (Pergamon Press: New York, NY).
[18] (a) For antimicrobial activity of 2-pyrones, see: I. J. S. Fairlamb, L. R. Marrison, J. M. Dickinson, F.-J. Lu, J. P. Schmidt, Bioorg. Med. Chem. 2004, 12, 4285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Wnurs%3D&md5=6484c4883de11c2587c6e21607c656a4CAS |
(b) For telomerase inhibition activity of 2-pyrones, see: A. Kanai, T. Kamino, K. Kuramochi, S. Kobayashi, Org. Lett. 2003, 5, 2837.
| Crossref | GoogleScholarGoogle Scholar |
(c) For antifungal activity of 2-pyrones, see: and references cited therein. A. Evidente, A. Cabras, L. Maddau, S. Serra, A. Andolfi, A. Motta, J. Agric. Food Chem. 2003, 51, 6957.
| Crossref | GoogleScholarGoogle Scholar |
(d) For cardiotonic activity of 2-pyrones, see: K. K. Chen, A. J. Kovarikova, J. Pharm. Sci. 1967, 56, 1535.
| Crossref | GoogleScholarGoogle Scholar |
(e) For pheromonal activity of 2-pyrones, see: X. Shi, W. S. Leal, Z. Liu, E. Schrader, J. Meinwald, Tetrahedron Lett. 1995, 36, 71.
| Crossref | GoogleScholarGoogle Scholar |
(f) For phytotoxic effect of 2-pyrones, see: H. Sato, K. Konoma, S. Sakamura, Agric. Biol. Chem. 1981, 45, 1675.
| Crossref | GoogleScholarGoogle Scholar |
[19] G. P. McGlacken, I. J. S. Fairlamb, Nat. Prod. Rep. 2005, 22, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVaku7Y%3D&md5=0810dd5a08cec3f20acb7515325789d1CAS |
[20] Y. Wang, H. Li, Y.-Q. Wang, Y. Liu, B. M. Foxman, L. Deng, J. Am. Chem. Soc. 2007, 129, 6364.and references cited therein
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslartbY%3D&md5=2e5c3f117d7340d78ab5fd1cd2f2b587CAS |
[21] (a) Ph3P catalysed synthesis of 2-pyrones in inert atmosphere, see: X.-F. Zhu, A.-P. Schaffner, R. C. Li, O. Kwon, Org. Lett. 2005, 7, 2977. and references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSgt7k%3D&md5=60098ca6ea022a3a28283da1e10dbb1aCAS |
(b) For synthesis of 2-pyrones using stoichiometric iodine, selenium and sulphur based reagents, see: T. Yao, R. C. Larock, J. Org. Chem. 2003, 68, 5936. and references cited therein
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) T. Luo, M. Dai, S. L. Zheng, S. L. Schreiber, Org. Lett. 2011, 13, 2834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVyhtrY%3D&md5=a84027bd2b6657bb7233b4dba665442cCAS |
(b) Y. Wang, D. J. Burton, J. Org. Chem. 2006, 71, 3859.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Mochida, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74, 6295.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Louie, J. E. Gibby, M. V. Farnworth, T. N. Tekavec, J. Am. Chem. Soc. 2002, 124, 15188.and references cited therein
| Crossref | GoogleScholarGoogle Scholar |
[23] G. Babu, P. T. Perumal, Aldrichim. Acta 2000, 33, 16.and references cited therein
| 1:CAS:528:DC%2BD3cXjvFCrsb4%3D&md5=0c52303dbed8d4358553c40cdde6cc6dCAS |
[24] J. Li, C. J. Li, Tetrahedron Lett. 2001, 42, 793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFSiug%3D%3D&md5=3a9ce3a9afb39a0e56683f1034f0a355CAS |
[25] L. A. Paquette, J. M. Mitzal, J. Am. Chem. Soc. 1996, 118, 1931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xpt1aiug%3D%3D&md5=d0593b0001c7f2a73fd4b176a5c5562eCAS |
[26] (a) For InCl3 catalysed: Diels-Alder Reaction, see: G. Babu, P. T. Perumal, Tetrahedron Lett. 1997, 38, 5025. and references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1ymsbo%3D&md5=602fb970d768f1f52ddb791121800be2CAS |
(b) Aldol reaction, see: T.-P. Loh, J. Pei, G.-Q. Cao, Chem. Commun. 1996, 1819.
| Crossref | GoogleScholarGoogle Scholar |
(c) Friedel-Crafts reaction, see: T. Miyai, Y. Onishi, A. Baba, Tetrahedron 1999, 55, 1017.
| Crossref | GoogleScholarGoogle Scholar |
[27] (a) InCl3 catalysed various organic transformations, see: P. R. Krishna, Y. L. Prapurna, M. Alivelu, Tetrahedron Lett. 2011, 52, 3460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFGltrg%3D&md5=5e57ff87eb1b5f83bee4a428eda4d3ccCAS |
(b) K. C. Chunavala, S. Adimurthy, Synth. Commun. 2011, 41, 1843.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. S. Yadav, B. V. S. Reddy, A. D. Krishna, T. Swamy, Tetrahedron Lett. 2003, 44, 6055.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. S. Yadav, B. V. S. Reddy, Synthesis 2002, 511.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. S. Yadav, B. V. S. Reddy, A. K. Raju, C. V. Rao, Tetrahedron Lett. 2002, 43, 5437.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Bandini, P. G. Cozzi, M. Giacomini, P. Melchiorre, S. Selva, A. Umani-Ronchi, J. Org. Chem. 2002, 67, 3700.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Bandini, P. Giorgio Cozzi, P. Melchiorre, A. Umani-Ronchi, Tetrahedron Lett. 2001, 42, 3041.
| Crossref | GoogleScholarGoogle Scholar |
(h)
(i) M. S. Singh, K. Raghuvanshi, Tetrahedron 2012, 68, 8683.
| Crossref | GoogleScholarGoogle Scholar |
[28] (a) For our recent reports of catalytic application of InCl3 in the synthesis of bioactive heterocycles, see: S. Dey, C. Pal, D. Nandi, V. S. Giri, M. Zaidlewicz, M. Krzeminski, L. Smentek, S. Dey, C. Pal, D. Nandi, V. S. Giri, M. Zaidlewicz, M. Krzeminski, L. Smentek, Org. Lett. 2008, 10, 1373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFygtbw%3D&md5=9868e1dfcaf233bf7a77422688c851b9CAS |
(b) S. Dey, D. Nandi, P. K. Pradhan, V. S. Giri, P. Jaisankar, Tetrahedron Lett. 2007, 48, 2573.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. K. Pradhan, S. Dey, V. S. Giri, P. Jaisankar, Synthesis 2005, 11, 1779.
(d) B. Pal, V. S. Giri, P. Jaisankar, Catal. Commun. 2005, 6, 711.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Del Zotto, W. Baratta, G. Verardo, P. Rigo, Eur. J. Org. Chem. 2000, 2795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslejsLg%3D&md5=fa6088eea9bb2abf02209d2a344064d7CAS |
[30] S.-L. Xu, C.-P. Li, J.-H. Li, Synlett 2009, 818.and references cited therein
| 1:CAS:528:DyaK1MXmslKht7w%3D&md5=3bcbf0f8e950fbf07500d7094c4ca33bCAS |
[31] G. Kaupp, J. Schmeyers, A. Kuse, A. Atfeh, Angew. Chem. Int. Ed. 1999, 38, 2896.
| Crossref | GoogleScholarGoogle Scholar |
[32] R. Shankar, H. Shukla, U. S. Singh, V. Thakur, K. Hajela, Synth. Commun. 2011, 41, 2738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyqsrk%3D&md5=b7cf6b2b781ff3910e0e8d79a820a22aCAS |