A Green Method for Preparing CuCl Nanocrystal in Deep Eutectic Solvent
Fenghua Zhang A , Junling Lai A , Ying Huang A , Fei Li A B , Genxiang Luo A and Gang Chu AA School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China.
B Corresponding author. Email: lnpulf@126.com
Australian Journal of Chemistry 66(2) 237-240 https://doi.org/10.1071/CH12387
Submitted: 18 August 2012 Accepted: 23 October 2012 Published: 16 November 2012
Abstract
Cuprous chloride (CuCl) is extensively used as a catalyst in organic synthesis, and as a desulfurising, decolourising and deodorising agent in the petroleum industry. The traditional synthesis of CuCl nanocrystal powders, which has already caused a big problem in the environment, was via reducing copper(II) by using different additives and a quantity of concentrated acid. In this paper, we report an ecologically and environmental friendly route to prepare nanocrystalline CuCl powders, simply by using the CuCl2 and copper powders in a deep eutectic solvent (DES) at room temperature. The obtained CuCl nanocrystals were characterised by XRD, SEM and XPS techniques, and a possible formation mechanism was also proposed.
References
[1] U. K. Gautam, B. Mukherjee, Bull. Mater. Sci. 2006, 29, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Cnu70%3D&md5=7f821bb290d3ca734f2678fa29012e5fCAS |
[2] J. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, A. P. Alivisatos, Science 2001, 292, 2060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFOlur0%3D&md5=6f95462fc975b3464c103cc3be2408d9CAS |
[3] T. Trindade, P. O’Brien, N. L. Pickett, Chem. Mater. 2001, 13, 3843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt12qu74%3D&md5=8be62e20ac66f00019b7bfb8f41ccf30CAS |
[4] A. P. Abbott, D. Boothby, G. Capper, J. Am. Chem. Soc. 2004, 126, 9142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Gns70%3D&md5=46edb82acbdaff15e1d849e01605360aCAS |
[5] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 2003, 39, 70.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. H. Choi, J. V. Spronsen, Y. Dai, M. Verberne, F. Hollmann, I. W. C. E. Arends, G.-J. Witkamp, R. Verpoorte, Plant Physiol. 2011, 156, 1701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrur7E&md5=13bf3681e2e27d8afa18f792f39fffecCAS |
[7] M. A. Kareem, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, J. Chem. Eng. Data 2010, 55, 4632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFanu7fI&md5=9eb4f80c3e41056d7df18b85bbd33de6CAS |
[8] P. Domínguez de María, Z. Maugeri, Curr. Opin. Chem. Biol. 2011, 15, 220.
| Crossref | GoogleScholarGoogle Scholar |
[9] G. Saravanan, S. Mohan, J. Alloy. Comp. 2012, 522, 162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Gis7w%3D&md5=ff58d48dc5db1d6a737af72428d6fabdCAS |
[10] H. G. Liao, Y. X. Jiang, Z. Y. Zhou, S. P. Chen, S. G. Sun, Angew. Chem. Int. Ed. 2008, 47, 9100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCnsbvE&md5=74e87c9f0cb35a5eb549028527f5df83CAS |
[11] M. A. Kareem, F. S. Mjalli, M. Ali Hashim, I. M. AlNashef, Fluid Phase Equilib. 2012, 314, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ejsb7O&md5=a053b335d3faf272a234a0f61b882f8dCAS |
[12] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, P. Shikotra, Inorg. Chem. 2005, 44, 6497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVGgsr0%3D&md5=ba94847e3f63c7fbb59743cea7f9a7eaCAS |
[13] X. Li, M. Hou, B. Han, X. Wang, L. Zou, J. Chem. Eng. Data 2008, 53, 548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1KqtA%3D%3D&md5=79ff3dd70137af405fb7de93b5261a00CAS |
[14] R. B. Leron, M. H. Li, Thermochim. Acta 2012, 530, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns12juw%3D%3D&md5=0dd7575e2f822c561318d7311384411aCAS |
[15] A. Brune, J. B. Wagner, Mater. Res. Bull. 1995, 30, 573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVSis7k%3D&md5=7a7445dad7967cbe2cda63995528c471CAS |
[16] O. Ambacher, J. Phys. D Appl. Phys. 1998, 31, 2653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1yjsr4%3D&md5=31bde7a0737fa38a5b4ae1cb4274719cCAS |
[17] V. Recupero, L. Pino, M. Cordaro, Fuel Process. Technol. 2004, 85, 1445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFKhsb0%3D&md5=dbd71542644a12c30cdf58644d9d45fdCAS |
[18] F. O. Lucas, L. O’Reilly, G. Natarajan, P. J. McNally, S. Daniels, D. M. Taylor, S. William, D. C. Cameron, A. L. Bradley, A. Miltra, J. Cryst. Growth 2006, 287, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFOitQ%3D%3D&md5=08a64a02d3a151a002b7de21e32dc180CAS |
[19] Z. C. Orel, E. Matijević, D. V. Goia, Colloid Polym. Sci. 2003, 281, 754.
| Crossref | GoogleScholarGoogle Scholar |
[20] B. K. Vaidya, Nature 1929, 123, 414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB1MXjtVOitw%3D%3D&md5=b4ae469a06a4a46108e9c5937322116eCAS |
[21] McGraw-Hill Encyclopedia of Chemistry 1983, 5th edn (McGraw-Hill, Inc.: New York, NY).
[22] J. P. Remeika, B. Batlogg, Mater. Res. Bull. 1980, 15, 1179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlslymurc%3D&md5=2900979ed90dbadc2db7eb8743cc91a0CAS |
[23] W. Sesselmann, T. J. Chuang, Surf. Sci. 1986, 176, 32.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtFCgtrk%3D&md5=a821489f8e88e850b03514bdb565c544CAS |
[24] Y. J. Zhu, Y. T. Qian, Y. F. Cao, Mat. Sci. Eng. B - Solid 1999, 57, 247.
[25] Y. C. Zhang, J. Y. Tang, Mater. Lett. 2007, 61, 3708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOnsbs%3D&md5=4d7042cda679ce967738cc23d1c43d26CAS |
[26] L. Wang, C. Xu, X. C. Zhang, T. K. Ying, Chem. Lett. 2007, 36, 642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSrtrg%3D&md5=b50ac3f135eb423c87c0652c5d6880e4CAS |
[27] W. Li, Z. Zhang, B. Han, S. Hu, J. Song, Y. Xie, X. Zhou, Green Chem. 2008, 10, 1142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gu7fO&md5=2b3f51ac278372fb35e583f529339d9eCAS |
[28] K. Othmer, Encyclopedia of Chemical Technology 1963, 2nd edn, Ch. 6, pp. 271–273 (Interscience Publishers: New York, NY).
[29] Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev. 2012, 41, 7108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOnurjF&md5=2b32e0cd76e900fece4250b4fcdeff0eCAS |
[30] A. P. Abbott, G. Capper, S. Gray, ChemPhysChem 2006, 7, 803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVCgtbk%3D&md5=fb7fcf9cf3f578ea6109b34cbd5a244cCAS |
[31] A. P. Abbott, K. E. Ttaib, G. Frisch, K. J. McKenzie, K. S. Ryder, Phys. Chem. Chem. Phys. 2009, 11, 4269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCitrc%3D&md5=3002c38f2713c7c41298c9453ae25486CAS |
[32] A.-M. Popescu, V. Constantin, A. Cojocaru, M. Olteanu, Rev. Chim. 2011, 62, 206.
| 1:CAS:528:DC%2BC3MXktVKltb8%3D&md5=db5a5e7beb7343d103ddceb2e6435ee1CAS |
[33] P. De Vreese, N. R. Brooks, K. Van Hecke, L. Van Meervelt, E. Matthijs, K. Binnemans, R. Van Deun, Inorg. Chem. 2012, 51, 4972.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFCrsL0%3D&md5=c10be39109e708499b1c661168c08137CAS |
[34] J. M. Rimsza, L. R. Corrales, Comput. Theor. Chem. 2012, 987, 57.
| 1:CAS:528:DC%2BC38XkvFymtrw%3D&md5=0db898f05d2da2ca7bb6840fc64243b6CAS |
[35] D. Lloyd, T. Vainikka, L. Murtomäki, K. Kontturia, E. Ahlbergb, Electrochim. Acta 2011, 56, 4942.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlent7s%3D&md5=8b70b776022ef005eadd4d97b13cb5fcCAS |