Sixty Years Young: The Diverse Biological Activities of Metal Polypyridyl Complexes Pioneered by Francis P. Dwyer
Nathan L. Kilah A C and Eric Meggers A BA Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany.
B College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
C Corresponding author. Email: kilah@chemie.uni-marburg.de
Nathan L. Kilah is a Humboldt Research Fellow in the group of Professor Eric Meggers at the Philipps-Universität Marburg. He completed his Ph.D. in 2008 with Professor S. Bruce Wild at the Australian National University and was formerly a Royal Commission for the Exhibition of 1851 Research Fellow with Professor Paul D. Beer at the University of Oxford (2008–2010). |
Eric Meggers is Professor of Chemical Biology at the Philipps-Universität Marburg, Germany, and Professor in the College of Chemistry and Chemical Engineering of Xiamen University, P. R. China. His current main research interests are the design and synthesis of stereochemically sophisticated metal complexes for applications in chemical biology and medicine. |
Australian Journal of Chemistry 65(9) 1325-1332 https://doi.org/10.1071/CH12275
Submitted: 6 June 2012 Accepted: 19 July 2012 Published: 21 August 2012
Abstract
Sixty years ago, the Australian chemist Francis P. Dwyer pioneered the use of ruthenium polypyridyl complexes as biologically active compounds. These chemically inert and configurationally stable complexes revealed an astonishing range of interesting biological activities, such as the inhibition of the enzyme acetylcholinesterase, anti-cancer activity in vivo, and bacteriostatic/bacteriocidal action. This review commemorates the sixtieth anniversary of Dwyer and co-workers’ landmark 1952 publication, summarises their broader achievements in biological inorganic chemistry, and discusses the contribution of this work to the development of modern biological and medicinal inorganic chemistry.
References
[1] F. P. Dwyer, E. C. Gyarfas, W. P. Rogers, J. H. Koch, Nature 1952, 170, 190.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXhsFyisg%3D%3D&md5=6163b3eb46afc4a476d8009c6111786eCAS |
[2] F. P. Dwyer, E. C. Gyarfas, M. F. O’Dwyer, Nature 1951, 167, 1036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXlt1Sjuw%3D%3D&md5=54c794429c26fed5b39381ec9aeb3332CAS |
[3] E. Beccari, Boll. Soc. Ital. Biol. Sper. 1938, 13, 6.
| 1:CAS:528:DyaA1cXjs1akuw%3D%3D&md5=220e3a020b13aa30c3d770ac26511d75CAS |
[4] E. Beccari, Boll. Soc. Ital. Biol. Sper. 1938, 13, 8.
| 1:CAS:528:DyaA1cXjs1arsg%3D%3D&md5=e9d6c7303adead5bec103b49676e7dccCAS |
[5] E. Beccari, Boll. Soc. Ital. Biol. Sper. 1941, 16, 214.
| 1:CAS:528:DyaH28XivFymsQ%3D%3D&md5=794ede000cd4f830a1c3b830b9ff45abCAS |
[6] E. Beccari, Boll. Soc. Ital. Biol. Sper. 1941, 16, 216.
| 1:CAS:528:DyaH28XivFymtg%3D%3D&md5=4de991b11e208ee652ea15155fe263e2CAS |
[7] E. Beccari, Arch. Sci. Biol. (Italy) 1941, 27, 204.
| 1:CAS:528:DyaH3sXhvFGrtg%3D%3D&md5=ed105115126cab8092f973283f417a14CAS |
[8] E. Beccari, Arch. Sci. Physiol. (Paris) 1949, 3, 611.
[9] S. E. Livingstone, in Australian Dictionary of Biography 1996, pp. 63–64 (Ed. J. Ritchie) (Melbourne University Press: Melbourne).
[10] A. T. Baker, S. E. Livingstone, Polyhedron 1985, 4, 1337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsVSqt7g%3D&md5=fd1ff7d7624259ca9e167b2a9d142054CAS |
[11] L. F. Lindoy, Coord. Chem. Rev. 2005, 249, 2731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gnt7vM&md5=96098ed4d8e478dc531029005e8d30b7CAS |
[12] A. Shulman, F. P. Dwyer, in Chelating Agents and Metal Chelates 1964, Ch. 9, pp. 383–439 (Eds F. P. Dwyer, D. P. Mellor) (Academic Press: New York, NY).
[13] R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes 1991, pp. 343–347 (Wiley-VCH Verlag: Weinheim).
[14] F. P. Dwyer, Aust. J. Sci. 1959, 22, 240.
[15] T. J. Rutherford, P. A. Pellegrini, J. Aldrich-Wright, P. C. Junk, F. R. Keene, Eur. J. Inorg. Chem. 1998, 1677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlGrsr4%3D&md5=4b2b8c93ba220cd2a06916ce0d200d76CAS |
[16] J. H. Koch, W. P. Rogers, F. P. Dwyer, E. C. Gyarfas, Aust. J. Biol. Sci. 1957, 10, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXht1eqtQ%3D%3D&md5=3c751f126c1167d5601648331132fb0fCAS |
[17] J. H. Koch, E. C. Gyarfas, F. P. Dwyer, Aust. J. Biol. Sci. 1956, 9, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXpslGk&md5=311f16f26bf4f350d9bf0c9fc29dcce1CAS |
[18] F. P. Dwyer, E. C. Gyarfas, R. D. Wright, A. Shulman, Nature 1957, 179, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXltlersQ%3D%3D&md5=cb6e29839366726691a290b65f0d65faCAS |
[19] E. J. Ariëns, G. M. Laycock, A. Shulman, A. M. Simonis, A. R. H. Wigmans, Br. J. Pharmacol. 1968, 34, 688P.
[20] A. Shulman, G. M. Laycock, E. J. Ariëns, A. R. H. Wigmans, Eur. J. Pharmacol. 1970, 9, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktlels7k%3D&md5=3ed5b92020f3a99bb2e4671b4178a5bdCAS |
[21] J. H. Koch, C. H. Gallagher, Nature 1959, 184, 1039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXks1Siug%3D%3D&md5=fd1885b68b2abd2b6df7c75f2d5d0209CAS |
[22] J. H. Koch, C. H. Gallagher, Biochem. Pharmacol. 1960, 3, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhvFamsw%3D%3D&md5=a5134def6c8804f0840e0859cd134d14CAS |
[23] F. P. Dwyer, I. K. Reid, A. Shulman, G. M. Laycock, S. Dixson, Aust. J. Exp. Biol. Med. Sci. 1969, 47, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhtFals70%3D&md5=c4601f64fb36c757b481637bfbe825e0CAS |
[24] H. M. Butler, A. Hurse, E. Thursky, A. Shulman, Aust. J. Exp. Biol. Med. Sci. 1969, 47, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXlt1aksbo%3D&md5=c3c23db0ddee2d5138c3291913c951f2CAS |
[25] H. M. Butler, J. C. Laver, A. Shulman, R. D. Wright, Med. J. Aust. 1970, 2, 309.
| 1:STN:280:DyaE3M%2FgvVKjsA%3D%3D&md5=ee78285b47916923a046bea7ce1e3a4eCAS |
[26] Anonymous, Lancet 1971, 297, 72.
| Crossref | GoogleScholarGoogle Scholar |
[27] D. O. White, A. W. Harris, F. P. Dwyer, A. Shulman, Aust. J. Exp. Biol. Med. Sci. 1963, 41, 517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktVertA%3D%3D&md5=fb6c74bb0ad1a4b334a2f4047c23a918CAS |
[28] D. O. White, A. W. Harris, A. Shulman, Aust. J. Exp. Biol. Med. Sci. 1963, 41, 527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXlsVGqsQ%3D%3D&md5=251efbdaa1a91f8708a3aaec945f9aaaCAS |
[29] K. Takamiya, Nature 1960, 185, 190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXot1WrtQ%3D%3D&md5=57797965cfd8cf84fbf80481b63a225fCAS |
[30] S. Kirschner, Y.-K. Wei, D. Francis, J. G. Bergman, J. Med. Chem. 1966, 9, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XhtVyiu7w%3D&md5=f3808744bc7f30c7623eac10425e32ecCAS |
[31] F. P. Dwyer, E. Mayhew, E. M. F. Roe, A. Shulman, Br. J. Cancer 1965, 19, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXktlCmtrw%3D&md5=ea62d7b25c5da4eb4405aab8f8167b84CAS |
[32] E. Mayhew, E. M. F. Roe, A. Shulman, J. R. Microsc. Soc. 1965, 84, 475.
| Crossref | GoogleScholarGoogle Scholar |
[33] A. Shulman, G. M. Laycock, T. R. Bradley, Chem. Biol. Interact. 1977, 16, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhtlelsLo%3D&md5=62a4ba2d72dce3d29634c2c5a9a2a7d5CAS |
[34] L. Salassa, Eur. J. Inorg. Chem. 2011, 4931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Krsr7J&md5=95f0e685c470e459374cd67ac7aea839CAS |
[35] B. M. Zeglis, V. C. Pierre, J. K. Barton, Chem. Comm. 2007, 4565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12hsrrF&md5=ebcde2f6c3cc3196f61dafea79c9883cCAS |
[36] H.-K. Liu, P. J. Sadler, Acc. Chem. Res. 2011, 44, 349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFalu7g%3D&md5=7298febabe6e262cdb42703e866b030aCAS |
[37] F. R. Keene, J. A. Smith, J. G. Collins, Coord. Chem. Rev. 2009, 253, 2021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFKltLY%3D&md5=1eef7daa1c5be81c4dd06cd95dbc2e8dCAS |
[38] J. K. Barton, Science 1986, 233, 727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsVyqur0%3D&md5=c6ea94d1f9c5c40b5971bda09cf02f12CAS |
[39] D. T. Odom, C. S. Parker, J. K. Barton, Biochemistry 1999, 38, 5155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFSgsbg%3D&md5=78a4cc153b0bab2ab9edd234ca48b10aCAS |
[40] U. Schatzschneider, J. Niesel, I. Ott, R. Gust, H. Alborzinia, S. Wölfl, ChemMedChem 2008, 3, 1104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWgsbY%3D&md5=8f7d191ecbe562e8e8a3f72ba4801b67CAS |
[41] O. Zava, S. M. Zakeeruddin, C. Danelon, H. Vogel, M. Grätzel, P. J. Dyson, ChemBioChem 2009, 10, 1796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOntr0%3D&md5=1bf349c63fbec3b67e0e8bf5f55ef700CAS |
[42] S. P. Mulcahy, K. Gründler, C. Frias, L. Wagner, A. Prokop, E. Meggers, Dalton Trans. 2010, 39, 8177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOhsrjL&md5=217bc2cc336e4c757a64486444037150CAS |
[43] A. Anthonysamy, S. Balasubramanian, V. Shanmugaiah, N. Mathivanan, Dalton Trans. 2008, 2136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFGhtbw%3D&md5=2b92ea7d3d00d20bc9f7927bebb7253aCAS |
[44] R. F. Donnelly, N. C. Fletcher, P. J. McCague, J. Donnelly, P. A. McCarron, M. M. Tunney, Lett. Drug Des. Discov. 2007, 4, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsF2qtLc%3D&md5=7b081300e81d04e2c88a91faeb4da3e6CAS |
[45] A. Bolhuis, L. Hand, J. E. Marshall, A. D. Richards, A. Rodger, J. Aldrich-Wright, Eur. J. Pharm. Sci. 2011, 42, 313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFChtrc%3D&md5=d4a5f419387fe1fd8f2a7c82569c0fc4CAS |
[46] F. Li, Y. Mulyana, M. Feterl, J. M. Warner, J. G. Collins, F. R. Keene, Dalton Trans. 2011, 40, 5032.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFahtbk%3D&md5=447e0d5ded7e1fdee6c2191619419ed7CAS |
[47] E. Meggers, Chem. Comm. 2009, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKnsrg%3D&md5=41305ca177dcec2a767d6f179fc68998CAS |
[48] A. R. Dunn, I. J. Dmochowski, A. M. Bilwes, H. B. Gray, B. R. Crane, Proc. Natl. Acad. Sci. USA 2001, 98, 12420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFait7s%3D&md5=c3458e65e66d4a9a702bb6c5b5b4bbb0CAS |
[49] S. M. Contakes, G. A. Juda, D. B. Langley, N. W. Halpern-Manners, A. P. Duff, A. R. Dunn, H. B. Gray, D. M. Dooley, J. M. Guss, H. C. Freeman, Proc. Natl. Acad. Sci. USA 2005, 102, 13451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygsbbK&md5=40b619c97988873c1dcbc86c71dae6f1CAS |
[50] D. B. Langley, D. E. Brown, L. E. Cheruzel, S. M. Contakes, A. P. Duff, K. M. Hilmer, D. M. Dooley, H. B. Gray, J. M. Guss, H. C. Freeman, J. Am. Chem. Soc. 2008, 130, 8069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeltrw%3D&md5=51dbcdc27091d5fcadd483288ff69a75CAS |
[51] S. P. Mulcahy, S. Li, R. Korn, X. Xie, E. Meggers, Inorg. Chem. 2008, 47, 5030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVSqtLc%3D&md5=8dd497a427ea507a9fbc7984ae0b1959CAS |
[52] J. Maksimoska, L. Feng, K. Harms, C. Yi, J. Kissil, R. Marmorstein, E. Meggers, J. Am. Chem. Soc. 2008, 130, 15764.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqtbrP&md5=19d1a403878db8ca6c4e7b946037fcefCAS |
[53] L. Feng, Y. Geisselbrecht, S. Blanck, A. Wilbuer, G. E. Atilla-Gokcumen, P. Filippakopoulos, K. Kräling, M. A. Celik, K. Harms, J. Maksimoska, R. Marmorstein, G. Frenking, S. Knapp, L.-O. Essen, E. Meggers, J. Am. Chem. Soc. 2011, 133, 5976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2htbc%3D&md5=517a76f1da54fa470e6abfd79211f188CAS |