Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Uniform Chrysanthemum-Like Bi2S3 Microspheres for Dye-Sensitised Solar Cells

Junfeng Wang A , Zhao Liu A , Shuming Yuan B , Lu Liu A C , Zhen Zhou B C and Wei Chen A C
+ Author Affiliations
- Author Affiliations

A Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, P. R. China.

B Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China.

C Corresponding authors. Email: liul@nankai.edu.cn; zhouzhen@nankai.edu.cn; chenwei@nankai.edu.cn

Australian Journal of Chemistry 65(9) 1342-1348 https://doi.org/10.1071/CH12243
Submitted: 15 May 2012  Accepted: 12 July 2012   Published: 21 August 2012

Abstract

3D uniform Bi2S3 chrysanthemum-like microspheres with 1D nanowire-assembly were prepared through a facile one-step hydrothermal route, using poly(vinylpyrrolidone) (PVP) as a soft template, and Bi(NO3)3 and thiourea as Bi and S sources, respectively. PVP molecules played an important role in the formation of uniform 3D Bi2S3 nanostructures. The reasonable formation mechanism of uniform chrysanthemum-shaped Bi2S3 microspheres was also proposed. Photovoltaic properties were studied preliminarily to demonstrate potential application in dye-sensitised solar cells for the replacement of scarce platinum as counter electrode.


References

[1]  L. M. Peter, J. Electroanal. Chem. 1979, 98, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhslyqsLo%3D&md5=811f2868959e9bc361262129698c7c4aCAS |

[2]  J. D. Desai, C. D. Lokhande, Mater. Chem. Phys. 1995, 41, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntl2ms78%3D&md5=ea48d5e920f68e7062fe621f805e3270CAS |

[3]  L. M. Peter, K. G. U. Wijayantha, D. J. Riley, J. P. Waggett, J. Phys. Chem. B 2003, 107, 8378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltV2is78%3D&md5=176f3e9d0723fff8b3a0ae572f64f614CAS |

[4]  B. Miller, A. Heller, Nature 1976, 262, 680.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvFCltA%3D%3D&md5=2c69e19975e4ba09a68f08e511198846CAS |

[5]  D. B. Wang, M. W. Shao, D. B. Yu, G. P. Li, Y. T. Qian, J. Cryst. Growth 2002, 243, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVektbc%3D&md5=9d7ffe4fb0985ef856bd20dbd987c624CAS |

[6]  Y. Wang, J. Chen, P. Wang, L. Chen, Y. B. Chen, L. M. Wu, J. Phys. Chem. C 2009, 113, 16009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslOmt7w%3D&md5=fe3d537963f62f5c3ac3176b62166982CAS |

[7]  Z. Liu, S. Peng, Q. Xie, Z. Hu, Y. Yang, S. Zhang, Y. Qian, Adv. Mater. 2003, 15, 936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCmu7c%3D&md5=f141190bd648b563b8a10f67034d6c20CAS |

[8]  W. Lou, M. Chen, X. Wang, W. Liu, Chem. Mater. 2007, 19, 872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Olsg%3D%3D&md5=46bc88347485a19a50b12f7f38c7eb12CAS |

[9]  J. H. Kim, H. Park, C. H. Hsu, J. Xu, J. Phys. Chem. C 2010, 114, 9634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslygtbs%3D&md5=f42791f51e48f73af59ff4989798b084CAS |

[10]  V. Stavila, K. H. Whitmire, I. Rusakova, Chem. Mater. 2009, 21, 5456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt7zL&md5=7f51a9e330cfd526d71f0b87062f7961CAS |

[11]  M. W. Shao, M. S. Mo, Y. Cui, G. Chen, Y. T. Qian, J. Cryst. Growth 2001, 233, 799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1ejs7c%3D&md5=f09380b26db0d022bd4470eb79c9c01dCAS |

[12]  H. F. Bao, X. Q. Cu, C. M. Li, Y. Gan, J. Zhang, J. Guo, J. Phys. Chem. C 2007, 111, 12279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12gsL4%3D&md5=c0432be7a9019756c20e4ec96c43f26cCAS |

[13]  J. M. Zhu, K. Yang, J. J. Zhu, G. B. Ma, X. H. Zhu, S. H. Zhou, Z. G. Liu, Opt. Mater. 2003, 23, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVeitLo%3D&md5=6939fbd969ea605ca0756a2634c9eafeCAS |

[14]  L. Cademartiri, R. Malakooti, P. G. O’Brien, A. Migliori, S. Petrov, N. P. Kherani, G. A. Ozin, Angew. Chem. Int. Ed. 2008, 47, 3814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKnsr8%3D&md5=74f5233a68e8d79daa2e95883d895c38CAS |

[15]  Q. Li, M. W. Shao, J. Wu, G. H. Yu, Y. T. Qian, Inorg. Chem. Commun. 2002, 5, 933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVWmt70%3D&md5=59acd0ae96e810749f6cab936d2af321CAS |

[16]  X. Yu, C. Cao, Cryst. Growth Des. 2008, 8, 3951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSrsr3F&md5=9209668b342398423ac445ff361e51bfCAS |

[17]  X. H. Liao, H. Wang, J. J. Zhu, H. Y. Chen, Mater. Res. Bull. 2001, 36, 2339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFOit7g%3D&md5=f07dd3c5a65213ad189438cadeb28b46CAS |

[18]  Y. F. Zhu, D. H. Fan, W. Z. Shen, Langmuir 2008, 24, 11131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaitLzL&md5=225509576f5ed80192eb20e19061a746CAS |

[19]  J. M. Ma, J. Q. Yang, L. F. Jiao, T. H. Wang, J. B. Lian, X. C. Duan, W. J. Zheng, Dalton Trans. 2011, 40, 10100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eqs7rF&md5=5a4704dd6ef5d9c0e84ff99198b823c2CAS |

[20]  (a) B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XoslOn&md5=01310e01518fadbec2fbdfc51cd32153CAS |
      (b) M. Grätzel, Nature 2001, 414, 338.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, P. J. Li, T. Sato, J. Am. Chem. Soc. 2008, 130, 11568.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. Grätzel, Prog. Photovolt. Res. Appl. 2006, 14, 429.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Sgt77E&md5=f70c600ed351714c4408c42fba5b02eaCAS |

[23]  H. Choi, I. Raabe, D. Kim, F. Teocoli, C. Kim, K. Song, J. H. Yum, J. Ko, M. K. Nazeeruddin, M. Grätzel, Chem. – Eur. J. 2010, 16, 1193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKhsr0%3D&md5=6d08f31f1c1c8051258a383c2e21bf14CAS |

[24]  Y. Luo, D. Li, Q. Meng, Adv. Mater. 2009, 21, 4647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFekurvO&md5=0d317c052b6e5e2057642417bad5125dCAS |

[25]  S. Yanagida, Y. Yu, K. Manseki, Acc. Chem. Res. 2009, 42, 1827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlChtb3E&md5=8ee4b07403da0549805c4e9fdd5f682eCAS |

[26]  H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, Adv. Mater. 2008, 20, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wnsrs%3D&md5=c9ab9360edef9c5c69311987d0a7f627CAS |

[27]  H. Choi, S. O. Kang, J. Ko, G. Gao, H. S. Kang, M. S. Kang, M. D. Nazeeruddin, M. Grätzel, Angew. Chem. Int. Ed. 2009, 48, 5938.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFGksLw%3D&md5=c4f2dcfc0aad3dc5a601b7e5df88a1b6CAS |

[28]  H. Choi, C. Baik, S. O. Kang, J. Ko, M. S. Kang, M. D. Nazeeruddin, M. Grätzel, Angew. Chem. Int. Ed. 2008, 47, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFymu7k%3D&md5=26f5b7eeb9261d65cd64d1665abd45b4CAS |

[29]  T. N. Murakami, M. Grätzel, Inorg. Chim. Acta 2008, 361, 572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKku7vI&md5=b75848f74f635cbeb817d2698d2bd72aCAS |

[30]  M. K. Wang, A. M. Anghel, B. Marsan, N. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 15976.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12iurjI&md5=dfd38860ddb01767340571292ce4cc78CAS |

[31]  Q. W. Jiang, G. R. Li, X. P. Gao, Chem. Commun. 2009, 6720.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  G. R. Li, F. Wang, Q. W. Jiang, X. P. Gao, P. W. Shen, Angew. Chem. Int. Ed. 2010, 49, 3653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFWis74%3D&md5=60e5059b533fc6b7d9ade0be2666c2dcCAS |

[33]  Z. W. Quan, J. Yang, P. P. Yang, Z. L. Wang, C. X. Li, J. Lin, Cryst. Growth Des. 2008, 8, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCqtLjK&md5=6bb1c7ea4f2ffe848f2bd9f1e7f63686CAS |

[34]  J. M. Ma, Z. F. Liu, J. B. Lian, X. C. Duan, T. I. Kim, P. Peng, X. D. Liu, Q. Chen, G. Yao, W. J. Zheng, CrystEngComm 2011, 13, 3072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVahtbY%3D&md5=4ee0139357f00ebdf53718fa09fdab43CAS |

[35]  Z. G. Cheng, S. Z. Wang, Q. Wang, B. Y. Geng, CrystEngComm 2010, 12, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1OntQ%3D%3D&md5=927ca493235177c07289856a092f2fb6CAS |

[36]  C. H. An, S. T. Wang, Y. Q. Liu, Mater. Lett. 2007, 61, 2284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktF2jsLY%3D&md5=234f2a7b8b16790ed4860cb9413ec6bdCAS |

[37]  C. Ye, G. Meng, Z. Jiang, Y. Wang, G. Wang, L. Zhang, J. Am. Chem. Soc. 2002, 124, 15180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVCht74%3D&md5=53c397466eace1fc6a7b854ce768d1f5CAS |

[38]  J. Black, E. M. Conwell, L. Seigle, C. W. Spencer, J. Phys. Chem. Solids 1957, 2, 240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXpvF2m&md5=3ffc4fe9fca388e1580affeb37d5ae45CAS |

[39]  X. F. Zhou, X. Zhao, D. Y. Zhang, S. Y. Chen, X. F. Guo, W. P. Ding, Y. Chen, Nanotechnology 2006, 17, 3806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSrsb3K&md5=9ec309901b2dd1a7a487c6da20970679CAS |

[40]  H. Colfen, S. Mann, Angew. Chem. Int. Ed. 2003, 42, 2350.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  C. X. Song, D. B. Wang, T. Yang, Z. S. Hu, CrystEngComm 2011, 13, 3087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVahur4%3D&md5=c73e73f58fdc0268bb4cc1770121cb26CAS |

[42]  L. Tian, H. Y. Tan, J. J. Vittal, Cryst. Growth Des. 2008, 8, 734.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  M. Toivola, L. Peltokorpi, J. Halme, P. Lund, Sol. Energy Mater. Sol. Cells 2007, 91, 1733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGrsbs%3D&md5=6f066aafb19b64f85e6b74734ce31286CAS |

[44]  L. Andrade, S. M. Zakeeruddin, M. K. Nazeeruddin, H. A. Ribeiro, A. Mendes, M. Grätzel, ChemPhysChem 2009, 10, 1117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Glt78%3D&md5=75573734dc3225d80ff6daa473443e2dCAS |

[45]  A. Zaban, J. Zhang, Y. Diamant, O. Melemed, J. Bisquert, J. Phys. Chem. B 2003, 107, 6022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFSqs7Y%3D&md5=f79d2636d87e46e01c76fa078d26cc5eCAS |