Copper(ii) Complexes of Two New Pyridyl–Aliphatic Amine Ligands: Synthetic, Structural, EPR, and Magnetic Studies*
Young Hoon Lee A , Hari Kristopo A , Arim Woo A , Mi Seon Won A , Shinya Hayami B , Pierre Thuéry C , Ok-Sang Jung D , Hong In Lee E , Bok Jo Kim F , Leonard F. Lindoy G and Yang Kim A HA Department of Chemistry and Advanced Materials, Kosin University, 194, Wachi-Ro, Yeongdo-gu, Busan 606-701, South Korea.
B Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
C CEA, IRAMIS, UMR 3299 CEA/CNRS, SIS2M, LCCEf, Bât.125, 91191 Gif-sur-Yvette, France.
D Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Pusan 609-735, South Korea.
E Department of Chemistry, Kyungpook National University, 702-701, Daegu, South Korea.
F Department of Biomedical Laboratory Science, College of Health, Kyungwoon University, Gumi-si, Gyeongsangbuk-do, 730-739, South Korea.
G School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
H Corresponding author. Email: ykim@kosin.ac.kr
Australian Journal of Chemistry 65(7) 926-930 https://doi.org/10.1071/CH12145
Submitted: 8 March 2012 Accepted: 24 April 2012 Published: 24 May 2012
Abstract
Two new polyamine ligands, L1 and L2, incorporating pyridyl and aliphatic amine donor sites have been prepared and their reaction with copper(ii) yields the mono- and binuclear complexes [Cu(L1)](ClO4)2 (1) and [Cl2Cu(L2)CuCl(H2O)]ClO4 (2), respectively. The X-ray structure of 1 confirms that the five nitrogen donors of L1 are bound to the central copper ion to give a distorted square pyramidal coordination sphere. In 2, L2 acts as a bridging ligand with its N3-donor coordination domains separated by a m-xylylene spacer group. An unusual feature of this latter complex is that symmetrical L2 gives rise to non-equivalent coordination behaviour at the individual copper sites; while both sites display five-coordination with distorted square pyramidal arrangements, they differ in having N3Cl2- and N3ClO-donor atom sets, respectively. The electron paramagnetic resonance (EPR) spectra of both complexes are discussed. Variable temperature magnetic susceptibility data confirmed the absence of magnetic interactions in 1 while a weak antiferromagnetic interaction between copper(ii) centres occurs in 2.
References
[1] (a) Y.-Q. Zheng, D.-Y. Cheng, B.-B. Liu, W.-X. Huang, Dalton Trans. 2010, 40, 277.| Crossref | GoogleScholarGoogle Scholar |
(b) A. Woo, Y. H. Lee, S. Hayami, L. F. Lindoy, P. Thuéry, Y. Kim, J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 409.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Nunez, R. Bastida, L. Lezama, A. Macias, P. Perez-Lourido, L. Valencia, Inorg. Chem. 2011, 50, 5596.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Escuer, G. Vlahopoulou, S. P. Perlepes, M. Font-Bardia, T. Calvet, Dalton Trans. 2011, 40, 225.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Kim, C. Mora, Y. H. Lee, J. K. Clegg, L. F. Lindoy, K. S. Min, P. Thuéry, Y. Kim, Inorg. Chem. Commun. 2010, 13, 1148.
| Crossref | GoogleScholarGoogle Scholar |
(f) V. Mathrubootham, A. W. Addison, K. T. Holman, E. Sinn, L. K. Thompson, Dalton Trans. 2009, 8111.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Turba, O. Walter, S. Schindler, L. P. Nielsen, A. Hazell, C. J. McKenzie, F. Lloret, J. Cano, M. Julve, Inorg. Chem. 2008, 47, 9612.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) C. R. K. Glasson, L. F. Lindoy, G. V. Meehan, Coord. Chem. Rev. 2008, 252, 940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGgtbs%3D&md5=a12bec376408c652ddb381cfaec50820CAS |
(b) B. Antonioli, D. J. Bray, J. K. Clegg, K. Gloe, K. Gloe, O. Kataeva, L. F. Lindoy, J. C. McMurtrie, P. J. Steel, C. J. Sumby, M. Wenzel, Dalton Trans. 2006, 4783 and reference therein. and references therein.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=d3f5a6810758b0e5933aa8dc1b85847bCAS |
[4] E. Garribba, G. Micera, J. Chem. Educ. 2006, 83, 1229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVGgsrc%3D&md5=bf8495804e41fbe14588506749fc7d08CAS |
[5] (a) V. Noethig-Laslo, N. Paulid, Monatsh. Chem. 1997, 128, 1101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1eqtg%3D%3D&md5=1c40cfb80ebd58ca5a96a55ab907807fCAS |
(b) S. S. Lemos, M. L. P. Collins, S. S. Eaton, G. R. Eaton, W. E. Antholine, Biophys. J. 2000, 79, 1085.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. J. van Dam, E. J. Reijerse, M. J. van der Meer, R. Guajardo, P. K. Mascharak, E. de Boer, Appl. Magn. Reson. 1996, 10, 71.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Garribba, G. Micera, J. Chem. Educ. 2006, 83, 1229.
| Crossref | GoogleScholarGoogle Scholar |
[6] B. Bleaney, K. D. Bowers, Proc. Roy. Soc. Lond. A 1952, 214, 451.
| 1:CAS:528:DyaG38XmsVCjsA%3D%3D&md5=641f9ac15a48f72daae45e9f729bd769CAS |
[7] R. W. W. Hooft, COLLECT 1998 (Nonius BV: Delft, The Netherlands).
[8] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFehsbw%3D&md5=8d3d2b169b325c8c890be4769cf7844fCAS |
[9] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |