Heterocyclic-Functionalized Organic Dyes for Dye-Sensitized Solar Cells: Tuning Solar Cell Performance by Structural Modification
Qianqian Li A , Zhongxing Jiang A , Jingui Qin A and Zhen Li A BA Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.
B Corresponding author. Email: lizhen@whu.edu.cn; lichemlab@163.com
Qianqian Li received her B.Sc. degree from Hubei University in China in 2004, and then obtained her Ph.D. degree from Wuhan University in 2009, under the supervision of Professor Zhen Li. She is now a faculty member at Wuhan University, and her research interests are in the design and synthesis of new electric and optical functional materials. |
Zhongxing Jiang graduated with B.Sc. and M.S. degrees from the chemistry department of Wuhan University in 1985 and 1988, respectively. He then worked in the chemistry department of Wuhan University as an assistant professor from 1988 to 1993. He then undertook his Ph.D. degree in organic chemistry at the University of Oxford from 1993 to 1997 under the supervision of Professor J. E. Baldwin and Professor C. J. Schofield, conducting research in the inhibition of ?-lactam. He returned to Wuhan University in 1997 as an associate professor. His research interests are focused on the synthesis and applications of heterocyclic compounds. |
Jingui Qin obtained his B.Sc. and M.Sc. from the Department of Chemistry at Wuhan University. After obtaining his Ph.D. in organometallic chemistry from the University of Oxford in the UK under the supervision of Professor Malcolm Green FRS in 1987, he returned to Wuhan University and became a full professor in 1993. He has conducted collaboration research at the Institute of Physical and Chemical Research, Japan, the Institute of Molecular Sciences, Japan, and the California Institute of Technology, USA. His interests lie in the design, synthesis, structure, and properties of various organic, inorganic and polymeric opto-electronic materials. |
Zhen Li received his B.Sc. and Ph.D. degrees from Wuhan University in China in 1997 and 2002, respectively, under the supervision of Professor Jingui Qin. During 2003–2004, he worked in the Hong Kong University of Science and Technology as Research Associate in the group of Professor Ben Zhong Tang. In 2010, he worked in the Georgia Institute of Technology with Professor Seth Marder. He became a full professor at Wuhan University from 2006, and his research interests lie in the development of organic molecules and polymers with new structure and new functions for organic electronics and photonics. |
Australian Journal of Chemistry 65(9) 1203-1212 https://doi.org/10.1071/CH12126
Submitted: 1 March 2012 Accepted: 29 March 2012 Published: 9 May 2012
Abstract
Due to their high conversion efficiency and low cost of production, dye-sensitized solar cells based on organic dyes have attracted considerable attention. By utilizing various heterocycles as construction blocks for organic dyes, the performance of solar cells was optimized to exhibit good light-harvesting features and suppress interfacial recombinations. The aim of this review is to highlight recent progress in the molecular design of heterocyclic-functionalized organic dyes for efficient dye-sensitized solar cells, and special attention has been paid to the relationship between chemical structure and the photovoltaic performance of dye-sensitized solar cells based on these dyes.
References
[1] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs77M&md5=fccb4df7dddafa567b5e4e8f5a7bc43eCAS |
[2] M. Grätzel, Acc. Chem. Res. 2009, 42, 1788.
| Crossref | GoogleScholarGoogle Scholar |
[3] N. J. Clifford, M. F. Eugenia, V. Aurélien, P. Emilo, Chem. Soc. Rev. 2011, 40, 1635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kis7k%3D&md5=9bef9c77e69b59d407b14484b59db07dCAS |
[4] Z. Ning, Y. Fu, H. Tian, Energ. Environ. Sci. 2010, 3, 1170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yrsbjM&md5=61cc715b36d829ef4e5998cce50cd65dCAS |
[5] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. Int. Edit. 2009, 48, 2474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlOmsrg%3D&md5=a314145ebe6c3e7c334e1af56e45d9e8CAS |
[6] B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XoslOn&md5=01310e01518fadbec2fbdfc51cd32153CAS |
[7] (a) Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903,
| Crossref | GoogleScholarGoogle Scholar |
(b) H. Chen, H. Huang, X. Huang, J. N. Clifford, A. Forneli, E. Palomares, X. Zheng, L. Zheng, X. Wang, P. Shen, B. Zhao, S. Tan, J. Phys. Chem. C 2010, 114, 3280.
| Crossref | GoogleScholarGoogle Scholar |
[8] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptl2jtg%3D%3D&md5=ce32023f1a1ddda200c4b65c20029106CAS |
[9] D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, L. Sun, Chem. Commun. 2006, 42, 2245.
| Crossref | GoogleScholarGoogle Scholar |
[10] E. M. J. Johansson, T. Edvinsson, M. Odelius, D. P. Hagberg, L. Sun, A. Hagfeldt, H. Siegbahn, H. Rensmo, J. Phys. Chem. C 2007, 111, 8580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVWjt70%3D&md5=46c08a7e49687b866b4acbaaace18f67CAS |
[11] F. Zhang, Y. Luo, J. Song, X. Guo, W. Liu, C. Ma, Y. Huang, M. Ge, Z. Bo, Q. Meng, Dyes Pigments 2009, 81, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSqt7c%3D&md5=90d5956c7a0b0126c188743bddaa5170CAS |
[12] K. Hara, Z. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, J. Phys. Chem. B 2005, 109, 15476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFWntL0%3D&md5=0bb74ce92c4930c5d1130af5f96fb162CAS |
[13] N. Koumura, Z. Wang, S. Mori, M. Miyashita, E. Suzuki, K. Hara, J. Am. Chem. Soc. 2006, 128, 14256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyntbzI&md5=a6f27f20d57eac9ce4a9f3b6ce0b8eb3CAS |
[14] K. Hara, Z. Wang, Y. Cui, A. Furube, N. Koumura, Energ. Environ. Sci. 2009, 2, 1109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFajtLY%3D&md5=058ea3788027086a592327e9bc405f19CAS |
[15] G. Zhang, Y. Bai, R. Li, D. Shi, S. Wenger, S. M. Zakeeruddin, M. Grätzel, P. Wang, Energ. Environ. Sci. 2009, 2, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVSns7Y%3D&md5=62388ccbc8bde21db07ac68d8af61de4CAS |
[16] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, Chem. Commun. 2009, 45, 2198.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. Qin, S. Wenger, M. Xu, F. Gao, X. Jing, P. Wang, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2008, 130, 9202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2hsr0%3D&md5=73491831428ee8ca46b8b9d672ef113dCAS |
[18] (a) R. Li, J. Liu, N. Cai, M. Zhang, P. Wang, J. Phys. Chem. B 2010, 114, 4461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlaju7o%3D&md5=0e504e919d9a7199cbf4bbf45d20bd9dCAS |
(b) H. N. Tsao, C. Yi, T. Moehl, J.-H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, ChemSusChem 2011, 4, 591.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Ko, H. Choi, M. S. Kang, H. Hwang, H. Ji, J. Kim, J. Ko, Y. Kang, J. Mater. Chem. 2010, 20, 2391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVCgsrs%3D&md5=1cf4bf7c9a5af8c84ab14c5f41e0ac61CAS |
[20] M. Xu, M. Zhang, M. Pastore, R. Li, F. De Angelis, P. Wang, Chem. Sci. 2012,
| Crossref | GoogleScholarGoogle Scholar |
[21] Z. Fang, A. A. Eshbaugh, K. S. Schanze, J. Am. Chem. Soc. 2011, 133, 3063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslyhsLk%3D&md5=5dc25236e15a6ece4c5bafc095799685CAS |
[22] J. T. Lin, P. C. Chen, Y. S. Yen, Y. C. Hsu, H. H. Chou, M. C. P. Yeh, Org. Lett. 2009, 11, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmtrbI&md5=ad3f86905cc93848a0efe672139ecbfdCAS |
[23] R. Li, X. Lv, D. Shi, D. Zhou, Y. Cheng, G. Zhang, P. Wang, J. Phys. Chem. C 2009, 113, 7469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKltb4%3D&md5=3bb502cafbadfd3aa2aa7919ac34b75fCAS |
[24] Q. Li, C. Lu, J. Zhu, E. Fu, C. Zhong, S. Li, Y. Cui, J. Qin, Z. Li, J. Phys. Chem. B 2008, 112, 4545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslSgu74%3D&md5=c3eb5f186c582a1c88e07d62edf0e351CAS |
[25] Q. Li, L. Lu, C. Zhong, J. Shi, Q. Huang, X. Jin, T. Peng, J. Qin, Z. Li, J. Phys. Chem. B 2009, 113, 14588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cku7vL&md5=74fc82c9103fd31aa27870fc5c530f87CAS |
[26] Q. Li, L. Lu, C. Zhong, J. Huang, Q. Huang, J. Shi, X. Jin, T. Peng, J. Qin, Z. Li, Chem. – Eur. J. 2009, 15, 9664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2ht7%2FO&md5=efd3916f8f92ba0a6568c8626314dac0CAS |
[27] Q. Li, J. Shi, H. Li, S. Li, C. Zhong, F. Guo, M. Peng, J. Hua, J. Qin, Z. Li, J. Mater. Chem. 2012, 22, 6689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1GisbY%3D&md5=b1af9567cfa7f150276c117b87c21c38CAS |
[28] (a) Y. S. Yen, Y. C. Hsu, J. T. Lin, C. W. Chang, C. P. Hsu, D. J. Yin, J. Phys. Chem. C 2008, 112, 12557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFKlsr4%3D&md5=ff60242cb37aec4cc1a3be52a0d9ae53CAS |
(b) P. Shen, X. Liu, S. Jiang, Y. Huang, L. Yi, B. Zhao, S. Tan, Org. Electron. 2011, 12, 1992.
| Crossref | GoogleScholarGoogle Scholar |
[29] L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am. Chem. Soc. 2006, 128, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yrs73I&md5=d691dd3ba3eaf4f8eab68e0f58090887CAS |
[30] A. Coskun, E. Deniz, E. U. Akkaya, Org. Lett. 2005, 7, 5187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWku7fN&md5=fe8705524478f30dcaca72dd3dc1dbb4CAS |
[31] G. Ulrich, C. Goze, M. Guardigli, A. Roda, R. Ziessel, Angew. Chem. Int. Edit. 2005, 44, 3694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslelsLo%3D&md5=4d92a86aa93185145a6f9e9b168d166bCAS |
[32] A. Loudet, R. Bandichhor, L. Wu, K. Burgess, Tetrahedron 2008, 64, 3642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlyru74%3D&md5=17d4af379ac856d989de4a7be068ec14CAS |
[33] S. Atilgan, Z. Ekmekci, A. L. Dogan, D. Guc, E. U. Akkaya, Chem. Commun. 2006, 42, 4398.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. Hattori, K. Ohkubo, Y. Urano, H. Sunahara, T. Nagano, Y. Wada, N. V. Tkachenko, H. Lemmetyinen, S. Fukuzumi, J. Phys. Chem. B 2005, 109, 15368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVyntb8%3D&md5=d2af4717b75437ff3a3de8f0b48a9e1fCAS |
[35] S. Erten-Ela, M. D. Yilmaz, B. Icli, Y. Dede, S. Icli, E. U. Akkaya, Org. Lett. 2008, 10, 3299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2nsL0%3D&md5=341a04f90e0eda829a8d186db46b90feCAS |
[36] S. Kolemen, O. A. Bozdemir, Y. Cakmak, G. Barin, S. Erten-Ela, M. Marszalek, J. H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, E. U. Akkaya, Chem. Sci. 2011, 2, 949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1aisLw%3D&md5=e3b695e496d485d51aa954c9363dff0aCAS |
[37] S. Qu, W. Wu, J. Hua, C. Kong, Y. Long, H. Tian, J. Phys. Chem. C 2010, 114, 1343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOisr7O&md5=73804d0a8943c4a2a0840e10d1321375CAS |
[38] C. Kanimozhi, P. Balraju, G. D. Sharma, S. Patil, J. Phys. Chem. C 2010, 114, 3287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyjt7Y%3D&md5=1ad53dbf64004a34c144210625a8be1dCAS |
[39] W. H. Howie, F. Claeyssens, H. Miura, L. M. Peter, J. Am. Chem. Soc. 2008, 130, 1367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFyktg%3D%3D&md5=8afb7958b2da1e4bd9eb99b83ab915c3CAS |
[40] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlOjtrs%3D&md5=1c9e8673411d3ae388bacfd4e20abb59CAS |
[41] H. J. Snaith, A. Petrozza, S. Ito, H. Miura, M. Grätzel, Adv. Funct. Mater. 2009, 19, 1810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslCks7s%3D&md5=8ad0aa48118cfceb1bf2568199ca1f55CAS |
[42] T. Le Bahers, T. Pauporté, G. Scalmani, C. Adamoa, I. Ciofini, Phys. Chem. Chem. Phys. 2009, 11, 11276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtLbK&md5=5f34266fc574b61e61403c959d75feecCAS |
[43] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M. Grätzel, Chem. Commun. 2008, 44, 5194.
| Crossref | GoogleScholarGoogle Scholar |
[44] N. O. V. Plank, I. Howard, A. Rao, M. W. B. Wilson, C. Ducati, R. S. Mane, J. S. Bendall, R. R. M. Louca, N. C. Greenham, H. Miura, R. H. Friend, H. J. Snaith, M. E. Welland, J. Phys. Chem. C 2009, 113, 18515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Sntr7M&md5=1db46cf4f7572fc0306c8a103ee03627CAS |
[45] R. Zhu, C. Jiang, B. Liu, S. Ramakrishna, Adv. Mater. 2009, 21, 994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVajs7c%3D&md5=844ca9eca37b84aedbed6611be631f31CAS |
[46] H. Tanaka, A. Takeichi, K. Higuchi, T. Motohiro, M. Takata, N. Hirota, J. Nakajima, T. Toyoda, Sol. Energy Mater. Sol. Cells 2009, 93, 1143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls12ntrs%3D&md5=9e676a7a56ca87b72ef5a86aec39d4e6CAS |
[47] D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, Angew. Chem. Int. Edit. 2008, 47, 1923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFGhs7k%3D&md5=312059b46621c17acab0ef6f51a508c5CAS |
[48] T. Dentani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Minoura, H. Miura, M. Matsui, New J. Chem. 2009, 33, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFelsrvE&md5=703e209ae1d9571a68811eee3768c4beCAS |
[49] B. Liu, W. Zhu, Q. Zhang, W. Wu, M. Xu, Z. Ning, Y. Xie, H. Tian, Chem. Commun. 2009, 44, 1766.
| Crossref | GoogleScholarGoogle Scholar |
[50] H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, L. Sun, Chem. Commun. 2007, 43, 3741.
| Crossref | GoogleScholarGoogle Scholar |
[51] H. Tian, X. Yang, J. Cong, R. Chen, C. Teng, J. Liu, Y. Hao, L. Wang, L. Sun, Dyes Pigments. 2010, 84, 62.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOisLbE&md5=5fb6853ad10014e0c15c06b75ead665cCAS |
[52] D. Cao, J. Peng, Y. Hong, X. Fang, L. Wang, H. Meier, Org. Lett. 2011, 13, 1610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislGmt7g%3D&md5=a980fba891e9890008ebd335735a6dcbCAS |
[53] M. J. Cho, S. S. Park, Y. S. Yang, J. H. Kim, D. H. Choi, Synth. Met. 2010, 160, 1754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFWjsbY%3D&md5=20053a8dd238e7cdd32883c2edd0e4e5CAS |
[54] W. Wu, J. Yang, J. Hua, J. Tang, L. Zhang, Y. Long, H. Tian, J. Mater. Chem. 2010, 20, 1772.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVWiurc%3D&md5=68874ded75e5f7c977e34b7cd6d5c55dCAS |
[55] C.-J. Yang, Y. J. Chang, M. Watanabe, Y.-S. Hon, T. J. Chow, J. Mater. Chem. 2012, 22, 4040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFamurs%3D&md5=409abb656958d4f5f22b75ab0efd5e03CAS |
[56] J. J. Kim, H. Choi, J. W. Lee, M. S. Kang, K. Song, S. O. Kang, J. Ko, J. Mater. Chem. 2008, 18, 5223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12rsLrF&md5=ae316721b14f7731fdfef9d04193d259CAS |
[57] M. Velusamy, K. R. J. Thomas, J. T. Lin, Y. C. Hsu, K. C. Ho, Org. Lett. 2005, 7, 1899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlKjsL0%3D&md5=a040f70292efc28c16c74a0076e1c0f4CAS |
[58] D. H. Lee, M. J. Lee, H. M. Song, B. J. Song, K. D. Seo, M. Pastore, C. Anselmi, S. Fantacci, F. De Angelis, M. K. Nazeeruddin, M. Gräetzel, H. K. Kim, Dyes Pigments 2011, 91, 192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWju7k%3D&md5=d3e84aaf855d39e1c0551f4502189c6bCAS |
[59] K. R. J. Thomas, P. Singh, A. Baheti, Y.-C. Hsu, K.-C. Ho, J. T. Lin, Dyes Pigments 2011, 91, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFCiurk%3D&md5=fd360e012f547dbc70ff9094f6be5adfCAS |
[60] W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. Wang, H. Tian, Adv. Funct. Mater. 2011, 21, 756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWgur0%3D&md5=92ad87e088ef9bafdf508e352c9448d5CAS |
[61] Y. Wu, X. Zhang, W. Li, Z. Wang, H. Tian, W. Zhu, Adv. Energy Mater. 2012, 2, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWrtLo%3D&md5=6a6b4e4d0b873af2691b7ffc4a65879dCAS |
[62] L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, C. C. Wu, S. H. Chou, F. Lin, S. H. Chenc, A. I. Tsai, J. Mater. Chem. 2011, 21, 5950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlyis7s%3D&md5=dca0e480acadacb6ae6536792a1f7aeeCAS |
[63] H. Tian, X. Yang, J. Cong, R. Chen, J. Liu, Y. Hao, A. Hagfeldt, L. Sun, Chem. Commun. 2009, 45, 6288.
| Crossref | GoogleScholarGoogle Scholar |
[64] H. Tian, X. Yang, R. Chen, A. Hagfeldt, L. Sun, Energ. Environ. Sci. 2009, 2, 674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFWqu7Y%3D&md5=0cfbe700b2cd97a76731e500e6e7d50eCAS |
[65] S. Franco, J. Garín, N. M. de Baroja, R. Pérez-Tejada, J. Orduna, Y. Yu, M. Lira-Cantú, Org. Lett. 2012, 14, 752.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVChsbY%3D&md5=c765327cf2e5d9aa9f6eedc1d47c9307CAS |
[66] S. G. Awuah, J. Polreis, J. Prakash, Q. Qiao, Y. You, J. Photoch. Photobio. A 2011, 224, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGhs7%2FK&md5=03bbcc26dc867bc6684d73f706464549CAS |
[67] Y. Ooyama, S. Inoue, R. Asada, G. Ito, K. Kushimoto, K. Komaguchi, I. Imae, Y. Harima, Eur. J. Org. Chem. 2010, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1emtA%3D%3D&md5=3d49cab4b588d4e555ff43b6d69f8f9eCAS |
[68] Y. Ooyama, Y. Shimada, A. Ishii, G. Ito, Y. Kagawa, I. Imae, K. Komaguchi, Y. Harima, J. Photoch. Photobio. A 2009, 203, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVejtLs%3D&md5=82057c195aa3eb4de718f6009d41c50cCAS |
[69] Y. Ooyama, Y. Shimada, Y. Kagawa, Y. Yamada, I. Imae, K. Komaguchi, Y. Harima, Tetrahedron Lett. 2007, 48, 9167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynsrbF&md5=9db0cc4496bd6c6362ec5a085e5d6e4bCAS |
[70] Y. Shibano, T. Umeyama, Y. Matano, H. Imahori, Org. Lett. 2007, 9, 1971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVSlsb8%3D&md5=d2f009f801ed511bf5abe841bca8e268CAS |
[71] Q. Yao, F. Meng, F. Li, H. Tian, C. Huang, J. Mater. Chem. 2003, 13, 1048.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVCntL4%3D&md5=2afc45a2ba2fc5cc6d5643b650737652CAS |
[72] Q. Yao, L. Shan, F. Li, D. Yin, C. Huang, New J. Chem. 2003, 27, 1277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Cqu7k%3D&md5=b606a148a09b934ecbf431cecdd8e7ddCAS |