Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Carbon Nanotube-Based Materials for Fuel Cell Applications

Jilei Liu A , Linfei Lai A , Nanda Gopal Sahoo B D , Weijiang Zhou B , Zexiang Shen A and Siew Hwa Chan C
+ Author Affiliations
- Author Affiliations

A Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.

B Energy Research Institute, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore.

C School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.

D Corresponding author. Email: ngsahoo@ntu.edu.sg




Jilei Liu is currently a PhD candidate in the School of Physical and Mathematical Sciences, Nanyang Technological University. He received his MSc from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2011. His research interests focus on Graphene and CNT and their applications in electrocatalysts, electrochemical capacitors and rechargeable batteries.



Linfei Lai is currently pursuing a PhD in Division of Physics and Applied Physics at Nanyang Technological University under the direction of Prof. Shen Zexiang. She received her MS degree in College of Materials from Xiamen University in 2009. Her current studies include chemical modification of graphene and/or CNT and their electrochemical energy storage application.



Nanda Gopal Sahoo received his PhD degree in 2004 from the Indian Institute of Technology, Kharagpur, India. Presently, he is a Scientist in the Energy Research Institute, Nanyang Technological University, Singapore. His areas of research include fuel cell, high performance polymer–CNT and polymer–graphene nano-composites, drug delivery and particle technology.



Weijiang Zhou received his PhD in physical chemistry from the Dalian Institute of Physical Chemistry, CAS and currently he is working in the Energy Research Institute, Nanyang Technological University. His research focuses on the fuel cell system and advanced materials for fuel cells.



Dr Zexiang Shen is a professor of physics at the School of Physical and Mathematical Sciences, Nanyang Technological University (NTU). He holds a joint appointment at the School of Materials Science. He is also concurrently the Programme Chair for Sustainable Earth in the Interdisciplinary Graduate School, NTU. His research interests include near-field Raman microscopy; fabrication, characterization and simulation of graphene and other nano materials; and applications of graphene in energy storage such as graphene-based supercapacitors and Li-ion batteries.



Professor Siew Hwa Chan received his PhD and postdoctoral training from Imperial College London before joining Nanyang Technological University (NTU) as a lecturer in 1991. He is now a professor in NTU and holds an appointment as Co-Director of Energy Research Institute at NTU (ERI@N).

Australian Journal of Chemistry 65(9) 1213-1222 https://doi.org/10.1071/CH12128
Submitted: 1 March 2012  Accepted: 18 April 2012   Published: 26 July 2012

Abstract

Carbon nanotubes (CNTs) have attracted extensive research interest due to their unique structure and properties such as high surface area, extraordinary mechanical properties, high electronic conductivity and chemical stability. These remarkable characteristics of CNTs, along with the inherent benefits of a carbon material, make CNTs promising candidates for fuel cell applications. In this review, we summarize and compare the recent research and development on CNT-based fuel cells, particularly focussing on CNTs as a catalytic support for enhanced electro-catalytic activity, metal-free electro-catalysts for the oxygen reduction reaction and fillers in the polymer electrolyte membrane in fuel cells.


References

[1]  K. Sundmacher, Ind. Eng. Chem. Res. 2010, 49, 10159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OnurnI&md5=6db6432004a8430a21ebac42fd6139a8CAS |

[2]  S. Wasmus, A. Kuver, J. Electroanal. Chem. 1999, 461, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslyns7s%3D&md5=3f8f46d53304c23afa3335aafa722f18CAS |

[3]  M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVKltrg%3D&md5=e2535d4eeefa881541629ae155561525CAS |

[4]  K. Kinoshita, J. Electrochem. Soc. 1990, 137, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Okurg%3D&md5=7740c2152543a33336059312409ac810CAS |

[5]  S. H. Liu, C. C. Chiang, M. T. Wu, S. B. Liu, Int. J. Hydrogen Energy 2010, 35, 8149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFOrsrc%3D&md5=e13c4185329f2c46a90b7e21b48041b7CAS |

[6]  B. Fang, J. H. Kim, M. Kim, J.-S. Yu, Chem. Mater. 2009, 21, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSlt7o%3D&md5=27e58541472e0351329d5b0447da5558CAS |

[7]  Z. W. Chen, D. Higgins, A. P. Yu, L. Zhang, J. J. Zhang, Energy Environ. Sci. 2011, 4, 3167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Cqs7jK&md5=cf8f2b287da276e394d896485b3d67f5CAS |

[8]  Y. Shao, G. Yin, Y. Gao, J. Power Sources 2007, 171, 558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSrs7fK&md5=86f253a77fc29fe2d9011a2196a1fb66CAS |

[9]  H. Chu, Y. Shen, L. Lin, X. Qin, G. Feng, Z. Lin, J. Wang, H. Liu, Y. Li, Adv. Funct. Mater. 2010, 20, 3747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlehu7fI&md5=9ca65c1b315f17eab43740169bbc6623CAS |

[10]  J. Yang, G. Goenaga, A. Call, D.-J. Liu, Electrochem. Solid-State Lett. 2010, 13B, 55.

[11]  H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Coord. Chem. Rev. 2010, 254, 1117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVOqu7Y%3D&md5=fcad5d2a702d53cb05f507049838562fCAS |

[12]  G. Girishkumar, M. Retter, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Langmuir 2005, 21, 8487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFCqsL8%3D&md5=08ac6d049ba027e56443de1eccf5d05bCAS |

[13]  N. G. Sahoo, S. Rana, J. W. Cho, L. Li, S. H. Chan, Prog. Polym. Sci. 2010, 35, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGhtb4%3D&md5=acb6e102598f7bb3980fdca6096bef9cCAS |

[14]  Z. Spitalsky, T. Dimitrios, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWrsbc%3D&md5=ba2792c5b7b2d4952fc9f2b0fb434cc9CAS |

[15]  Y. C. Chiang, J. R. Ciou, Int. J. Hydrogen Energy 2011, 36, 6826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslKru7w%3D&md5=dc37bca2ddd6469a36e27eefc881582dCAS |

[16]  L. Q. Hoa, M. C. Vestergaard, H. Yoshikawa, M. Saito, E. Tamiya, Electrochem. Commun. 2011, 13, 746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVSrurw%3D&md5=ac30f71cdbfc08cc5acf5b6e90d63a98CAS |

[17]  D. P. He, S. C. Mu, M. Pan, Carbon 2011, 49, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjurbO&md5=cb45a290454977cc41a36895d7570290CAS |

[18]  D. J. Guo, J. M. You, J. Power Sources 2012, 198, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGgt77K&md5=59c679f4e26c307e6be363b3e572d74cCAS |

[19]  A. Orfanidi, M. K. Daletou, S. G. Neophytides, Appl. Catal. B 2011, 106, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFOntr4%3D&md5=cf178db24ba9fdd91b2b5aba50f656b0CAS |

[20]  X. Wang, W.-Z. Li, Z.-W. Chen, M. Waje, Y.-S. Yan, J. Power Sources 2006, 158, 154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFanur4%3D&md5=e8d6f40b3af067b9b07bc47a75254fc7CAS |

[21]  H. Huang, D. Sun, X. Wang, J. Phys. Chem. C 2011, 115, 19405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGgtrrK&md5=40205b16c66bc4ffc4bb44f999b02432CAS |

[22]  Z. Q. Jiang, X. Y. Yu, Z. J. Jiang, Y. D. Meng, Y. C. Shi, J. Mater. Chem. 2009, 19, 6720.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaktbjN&md5=92115bd842145d817c08209a73a65c72CAS |

[23]  Z. Q. Jiang, Z. J. Jiang, Y. D. Meng, Appl. Surf. Sci. 2011, 257, 2923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVWktA%3D%3D&md5=bd7ff59b256606c8c6a7e8302de2fbe0CAS |

[24]  B. Fang, M. S. Kim, J. H. Kim, M. Y. Song, Y. J. Wang, H. Wang, D. P. Wilkingson, J. S. Yu, J. Mater. Chem. 2011, 21, 8066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVagsrs%3D&md5=0fe52bacaeae088439340743276c1075CAS |

[25]  C. H. Hsu, H.Y. Liao, P. L. Kuo, J. Phys. Chem. C 2010, 114, 7933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVKltLY%3D&md5=2174a69b61fbf893882139f921e4c6c1CAS |

[26]  D. L. Wang, S. F. Lu, S. P. Jiang, Electrochim. Acta 2010, 55, 2964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitF2qtL4%3D&md5=89e83cd67d445184337c32cc76dd960cCAS |

[27]  H. S. Oh, K. Kim, H. Kim, Int. J. Hydrogen Energy 2011, 36, 11564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyqsr3O&md5=1ebf8750dda1a68a8641f9506956af48CAS |

[28]  D. He, C. Zeng, C. Xu, N. Cheng, H. Li, S. Mu, M. Pan, Langmuir 2011, 27, 5582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFalsLw%3D&md5=07d5df306d31f93a9b0d418a902fa73cCAS |

[29]  X. Liu, R. Villacorta, A. Adame, A. M. Kannan, Int. J. Hydrogen Energy 2011, 36, 10877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWnt7fK&md5=02fd57e72700f13cda794d8571b6c7e3CAS |

[30]  R. R. S. Gari, Z. Li, L. Dong, Effects of Different Carbon Nanotube Supported Catalysts on Methanol and Ethanol Electro-Oxidation. MRS Proceedings, 2009, 1213, 1213-T08-17. 10.1557/PROC-1213-T08-17

[31]  G. Wu, B. Q. Xu, J. Power Sources 2007, 174, 148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yitr3I&md5=a5fb39c5049cbce1706eeb784fe5b847CAS |

[32]  Y. Chen, G. Zhang, J. Ma, Y. Zhou, Y. Tang, T. Lu, Int. J. Hydrogen Energy 2010, 35, 10109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1emtbrL&md5=0765a9d7340b79880679aa75d946f2acCAS |

[33]  A. N. Golikand, M. Asgari, E. Lohrasbi, M. Yari, J. Appl. Electrochem. 2009, 39, 1369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFKjtrY%3D&md5=3da8fcb01fe9e0f7d41eabb895d2f29aCAS |

[34]  A. N. Golikand, M. Asgari, E. Lohrasbi, Int. J. Hydrogen Energy 2011, 36, 13317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyktLzM&md5=f6e42100299516385f103fea02ca6cbdCAS |

[35]  M. A. Bavio, T. Kessler, Int. J. Hydrogen Energy 2012,
         | Crossref | GoogleScholarGoogle Scholar |

[36]  A. Santasalo-Aarnio, M. Borghei, I. V. Anoshkin, A. G. Nasibulin, E. I. Kauppinen, V. Ruiz, T. Kallio, Int. J. Hydrogen Energy 2012, 37, 3415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWrurw%3D&md5=b602a7f1467edad205275ea691fce159CAS |

[37]  C. T. Hsieh, W. Y. Chen, I. L. Chen, A. K. Roy, J. Power Sources 2012, 199, 94.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqt7zJ&md5=c4bac1f8fa7edb0239d1d9feb1ceaad0CAS |

[38]  R. S. Amin, K. M. El-Khatib, R. M. Abdel Hameed, R. E. Souaya, M. A. Etman, Appl. Catal. A Gen. 2011, 407, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ylsbbK&md5=44ab48134588067647acea4dba76f8d4CAS |

[39]  B. P. Vinayan, R. I. Jafri, R. Nagar, N. Rajalakshmi, K. Sethupathi, S. Ramaprabhu, Int. J. Hydrogen Energy 2012, 37, 412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OrtLnI&md5=6795559f7d211b54f9322a39a08fb37bCAS |

[40]  H. Dong, L. Dong, J. Inorg. Organomet. Polym. 2011, 21, 754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFegtLjL&md5=b6196e372c715538033aac3b78042ce1CAS |

[41]  S. J. Jiang, Y. W. Ma, H. S. Tao, G. Q. Jian, X. Z. Wang, Y. N. Fan, J. M. Zhu, Z. Hu, J. Nanosci. Nanotechnol. 2010, 10, 3895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1yjsb4%3D&md5=ba536277d89c166e17c0bf5c7fac19aaCAS |

[42]  H. Feng, J. Ma, Z. Hu, J. Mater. Chem. 2010, 20, 1702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVWiur4%3D&md5=17e96f47c164967d23b03115be53940dCAS |

[43]  C. H. Hsu, P. L. Kuo, J. Power Sources 2012, 198, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGgtLzI&md5=e35964e8f534cf3b506941b253a1de33CAS |

[44]  X. Wang, H. Xue, L. Yang, H. Wang, P. Zang, X. Qin, Y. Wang, Y. Ma, Q. Wu, Z. Hu, Nanotechnology 2011, 22, 395401.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  Z. Liu, Q. Shi, F. Peng, H. Wang, R. Zhang, H. Yu, Electrochem. Commun. 2012, 16, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFOhu74%3D&md5=54995b32b7857ebf7e0fe64696b5f6beCAS |

[46]  C. C. Bakir, N. Sahin, R. Polat, Z. Dursun, J. Electroanalyt. Chem. 2011, 662, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWksbjO&md5=c2a3374b21fa8cfca06a80a0b45a4233CAS |

[47]  S. Takenaka, N. Susuki, H. Miyamoto, E. Tanabe, H. Matsune, M. Kishida, J. Catal. 2011, 279, 381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFyhs7Y%3D&md5=88b3a8dee9e7a5705b02672ae63f092fCAS |

[48]  Z. Cui, P. J. Kulesza, C. M. Li, W. M. Li, W. Xing, S. P. Jiang, Int. J. Hydrogen Energy 2011, 36, 8508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvF2rsLo%3D&md5=a929a619dc930e5cde5dea8034fe5c98CAS |

[49]  K. T. Jeng, N. Y. Hsu, C. C. Chien, Int. J. Hydrogen Energy 2011, 36, 3997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVynsL8%3D&md5=631040695fda242724861eaf2c5214c9CAS |

[50]  K. S. Lee, B. C. Lee, S. Lee, I. In, T. W. Hong, D. Kim, W. Kim, D. Kim, Int. J. Hydrogen Energy 2011, 37, 6268.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  I. Kruusenberg, L. Matisen, Q. Shah, A. M. Kannan, K. Tammeveski, Int. J. Hydrogen Energy 2012, 37, 4406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVClsb0%3D&md5=3683dd557d46ee48c87297cdc3eca696CAS |

[52]  W. Y. Wong, W. R. W. Daud, A. B. Mohamad, A. A. H. Kadhum, E. H. Majlan, K. S. Loh, Diamond Related Materials 2012, 22, 12.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFOru7g%3D&md5=175be87a8b55d9553f0e1f9eec7b5622CAS |

[53]  D. C. Higgins, J. Wu, W. Li, W. Li, Z. Chen, Electrochim. Acta 2012, 59, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Krsb%2FO&md5=98c28ab78b24ee037b0c2f0285a496deCAS |

[54]  K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science 2009, 323, 760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlersL8%3D&md5=fbb4929915b6607b5fd50ef9ebd65b5cCAS |

[55]  H. S. Oh, J. G. Oh, W. H. Lee, H. J. Kim, H. Kim, Int. J. Hydrogen Energy 2011, 36, 8181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvF2kurg%3D&md5=41bdb96c024e5544cd96d895ef4931ddCAS |

[56]  J. D. Wiggins-Camacho, K. J. Stevenson, J. Phys. Chem. C 2011, 115, 20002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SltLjL&md5=b55f7657e5d8b3a77dad29db1f8bd6b8CAS |

[57]  G. Liu, X. Li, P. Ganesan, B. N. Popov, Electrochim. Acta 2010, 55, 2853.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitF2qtrs%3D&md5=0ac470fd665baab23b637533b912fe36CAS |

[58]  Z. Chen, D. Higgins, Z. Chen, Carbon 2011, 48, 3057.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  D. Higgins, Z. Chen, Z. Chen, Electrochim. Acta 2011, 56, 1570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Sqt7bJ&md5=07f5cb00daba80cd5a57c3fd50208570CAS |

[60]  L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Cks7s%3D&md5=657dedd05272d9bb2f0c91ba2d0a6a95CAS |

[61]  Z. Liu, F. Peng, H. Wang, H. Yu, J. Tan, L. Zhu, Catal. Commun. 2011, 16, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyjsrnP&md5=99dea1ca6004531ed8e495b30eed2556CAS |

[62]  R. Kannan, U. Bipinlal, S. Kurungot, V. K. Pillai, Phys. Chem. Chem. Phys. 2011, 13, 10312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFyksL4%3D&md5=95861f3ce6f7be02340274c3337c722dCAS |

[63]  S. Wang, D. Yu, L. Dai, J. Am. Chem. Soc. 2011, 133, 5182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVClsbY%3D&md5=4b1d2b57ae667545bf6539f447d6cdeeCAS |

[64]  N. P. Cele, S. Sinha Ray, S. K. Pillai, M. Ndwandwe, S. Nonjola, L. Sikhwivhilu, M. K. Mathe, Fuel Cells 2010, 10, 64.
         | 1:CAS:528:DC%2BC3cXhvFaqurw%3D&md5=b66693a34058960a4291f720db60c24eCAS |

[65]  H. K. Lee, Y. H. Kim, Y. Park, Y. J. Lee, A. I. Gopalan, K. P. Lee, S. J. Choi, J. Nanoelectron. Optoelectron. 2011, 6, 357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSqsb8%3D&md5=3b6085fdfae0291bd358f8cd7100d334CAS |

[66]  Y. H. Kim, H. K. Lee, Y. Park, A. I. Gopalan, K. P. Lee, S. J. Choi, J. Nanoelectron. Optoelectron. 2010, 5, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SqtbvJ&md5=53d53ceaaabec3156d9a418241172e1cCAS |

[67]  Y. H. Kim, H. K. Lee, Y. Park, Y. J. Lee, A. I. Gopalan, K. P. Lee, S. J. Choi, Adv. Mater. Res. 2012, 3685, 347.

[68]  Y. L. Liu, Y. H. Su, C. M. Chang, Suryani, D. M. Wang, J. Y. Lai, J. Mater. Chem. 2010, 20, 4409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKrt74%3D&md5=898034f784df1625dacc19e3ab261e64CAS |

[69]  Suryani, C. M. Chang, Y. L. Liu, Y. M. Lee, J. Mater. Chem. 2011, 21, 7480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2gu7Y%3D&md5=25ebe16053a16574a5e8fab48fd59327CAS |

[70]  S. Yun, H. Im, Y. Heo, J. Kim, J. Membr. Sci. 2011, 380, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFSrs7c%3D&md5=75b60f2a6b029436d4a55c229a639310CAS |