Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Ag Nanoparticle-Poly(acrylic acid) Composite Film with Dynamic Plasmonic Properties

Volodymyr Chegel A D , Andrii Lopatynskyi A , Shinsuke Ishihara B D , Jonathan P. Hill B C and Katsuhiko Ariga B C
+ Author Affiliations
- Author Affiliations

A V. E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences (NAS) of Ukraine, 41 Nauky Ave., 03028, Kyiv, Ukraine.

B World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

C Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

D Corresponding authors. Email: vche111@yahoo.com; ISHIHARA.Shinsuke@nims.go.jp

Australian Journal of Chemistry 65(9) 1223-1227 https://doi.org/10.1071/CH12119
Submitted: 25 February 2012  Accepted: 28 March 2012   Published: 9 May 2012

Abstract

Poly(acrylic acid) (PAA) thin films with embedded Ag nanoparticles (AgNPs) prepared by UV photoreduction exhibited cyclically changeable optical absorbance properties during variation of ambient aqueous medium. The observed phenomenon is due to conformational changes in the polymer matrix which leads to variation in the 3D configuration of the AgNPs ensemble. Reversible variation of the distance between nanoparticles during swelling and shrinking processes within the PAA matrix changes the optical parameters of these plasmonic metamaterials and can be considered a useful feature for optoelectronic devices and sensors. The finite-difference time-domain method was used for modelling of light extinction of developed matrix structures in their swollen and shrunken states.


References

[1]  K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya, Sci. Technol. Adv. Mater. 2008, 9, 014109.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J. P. Hill, Bull. Chem. Soc. Jpn. 2012, 85, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFSjsrc%3D&md5=c103212655324d004231da4b9d623875CAS |

[3]  M. Li, S. Ishihara, M. Akada, M. Liao, L. Sang, J. P. Hill, V. Krishnan, Y. Ma, K. Ariga, J. Am. Chem. Soc. 2011, 133, 7348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVGgtr0%3D&md5=56bb6cea4cef75cab05f1a18496433c1CAS |

[4]  M. Mashimo, Q. Ji, S. Ishihara, H. Sakai, M. Abe, J. P. Hill, K. Ariga, Chem. Lett. 2011, 40, 840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSrtrzJ&md5=3242ac55eb747eead0c15f3acbab7fc7CAS |

[5]  K. Ariga, S. Ishihara, H. Abe, M. Li, J. P. Hill, J. Mater. Chem. 2012, 22, 2369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslyluw%3D%3D&md5=50538ab85035175828f13a685bb5eaa6CAS |

[6]  K. Ariga, S. Ishihara, J. Labuta, J. P. Hill, Curr. Org. Chem. 2011, 15, 3719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ansLnP&md5=ac6d2ed4adf66844cc8f25d791cde0c3CAS |

[7]  S. Ishihara, J. P. Hill, A. Shundo, G. J. Richards, J. Labuta, K. Ohkubo, S. Fukuzumi, A. Sato, M. R. J. Elsegood, S. J. Teat, K. Ariga, J. Am. Chem. Soc. 2011, 133, 16119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmtr7P&md5=91057de988238334d8c7949d0b1fc686CAS |

[8]  K. Ariga, S. Ishihara, H. Izawa, H. Xia, J. P. Hill, Phys. Chem. Chem. Phys. 2011, 13, 4802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Cksbw%3D&md5=e287e1313368df2745f9709ff63dd9f8CAS |

[9]  K. Ariga, T. Mori, J. P. Hill, Adv. Mater. 2012, 24, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1equ7bO&md5=89d599c651bafc1f30edc4af9ea3549bCAS |

[10]  V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, K. Ariga, J. Phys. Chem. C 2012, 116, 2683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsLnL&md5=937913b356de5cc4c31786e206a933c6CAS |

[11]  D. Austin, N. Mullin, A. Bismuto, I. Luxmoore, A. M. Adawi, D. G. Revin, M. Soulby, J. W. Cockburn, Q. Jiang, A. B. Krysa, A. G. Cullis, J. Faist, J. K. Hobbs, L. R. Wilson, IEEE Photon. Technol. Lett. 2010, 22, 1217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKhu7%2FL&md5=919475135617b7eea93b36f311d7b825CAS |

[12]  M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, N. I. Zheludev, Adv. Mater. 2011, 23, 5540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgtbbL&md5=2501ad5c8d9b49bce41acb5c4754d85eCAS |

[13]  Y. Gu, Q. Li, J. Xiao, K. Wu, G. P. Wang, J. Appl. Phys. 2011, 109, 023104.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, Nat. Mater. 2009, 8, 867.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSgs77O&md5=fdf0459d338ccc93582a4d27acfce25cCAS |

[15]  X. Zhang, B. Sun, R. Friend, H. Guo, D. Nau, H. Giessen, Nano Lett. 2006, 6, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Gqsrs%3D&md5=32f51f4aeba6b8d96e9d4afc6603d2adCAS |

[16]  S. Malynych, G. Chumanov, J. Am. Chem. Soc. 2003, 125, 2896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFCgsL4%3D&md5=4d413a4a0989c6146736aa387bda3411CAS |

[17]  K. Aslan, Z. Leonenko, J. R. Lakowicz, C. D. Geddes, J. Phys. Chem. B 2005, 109, 3157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFCktA%3D%3D&md5=7ef9946ebfed517cbf28cf7305d17a5dCAS |

[18]  Y. B. Zheng, Y.-W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, T. J. Huang, Nano Lett. 2009, 9, 819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Gj&md5=900b99ae377f2ed5cb44d29646a3ee3bCAS |

[19]  M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, F. Höök, Anal. Chem. 2010, 82, 2087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyjtro%3D&md5=47197f1b155d40dfcd0b1d5297cedd9cCAS |

[20]  V. Chegel, O. A. Raitman, O. Lioubashevski, Yu. Shirshov, E. Katz, I. Willner, Adv. Mater. 2002, 14, 1549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVymsb8%3D&md5=130ffb0a9fdb37e1751c11c3ba0c71fbCAS |

[21]  J.-Y. Shim, V. K. Gupta, J. Colloid Interface Sci. 2007, 316, 977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yhs7jI&md5=2d03795d975f70b192fa85ea203d7dcaCAS |

[22]  K. S. Iyer, B. Zdyrko, S. Malynych, G. Chumanov, I. Luzinov, Soft Matter 2011, 7, 2538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFWjs7g%3D&md5=95315757a76300c200c9d24356252482CAS |

[23]  H. Otsuka, Y. Akiyama, Y. Nagasaki, K. Kataoka, J. Am. Chem. Soc. 2001, 123, 8226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFygtLg%3D&md5=fbad15cc37349250f51bd6466b07ecd0CAS |

[24]  B. D. Lucas, J.-S. Kim, C. Chin, L. J. Guo, Adv. Mater. 2008, 20, 1129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wmtbg%3D&md5=7a32b3dd8cf97c9ef2484227f277902eCAS |

[25]  R. Gradess, R. Abargues, A. Habbou, J. Canet-Ferrer, E. Pedrueza, A. Russell, J. L. Valdés, J. P. Martínez-Pastor, J. Mater. Chem. 2009, 19, 9233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSgtrvK&md5=1ac9b19a9d5e430b8d65c5e1734a97d6CAS |

[26]  W. A. Murray, B. Auguie, W. L. Barnes, J. Phys. Chem. C 2009, 113, 5120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFOmurs%3D&md5=fa9e624d9d12da01ad1078e3a613ea2dCAS |

[27]  W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, Opt. Commun. 2003, 220, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1ektr4%3D&md5=2577716cad72e72af10d22eb316f974dCAS |

[28]  J. E. Elliott, M. Macdonald, J. Nie, C. N. Bowman, Polymer 2004, 45, 1503.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVakug%3D%3D&md5=0fa78f047bf853213ada30f1d2188b0dCAS |

[29]  R. Gabai, N. Sallacan, V. Chegel, T. Bourenko, E. Katz, I. Willner, J. Phys. Chem. B 2001, 105, 8196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFygurk%3D&md5=8ce299f8949e1f9868be718152972547CAS |

[30]  J. W. Gooch, Encyclopedic Dictionary of Polymers, 2nd Edition 2010 (Springer: New York, NY).

[31]  Refractive index n of 0.1 M (c.a. 1 wt.-%) aqueous sulphuric acid at 20°C is 1.3342, which is similar to that of pure water (n = 1.3330). See: http://us.mt.com/us/en/home/supportive_content/application_editorials/Sulfuric_Acid_re_e.html (accessed 21 February 2012).

[32]  N. Akkilic, Z. Mustafaeva, M. Mustafaev, V. Chegel, Macromol. Symp. 2008, 269, 138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSnu7rE&md5=ff2b3f58dd1c583c9f7fc25c7b770832CAS |