Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Magnetic Dipole Origins of the 3A2g → 3T2g Transition in Ni(ii) Doped MgO

Mark J. Riley A C , Jeremy Hall B and Elmars R. Krausz B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia.

B Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

C Corresponding author. Email: m.riley@uq.edu.au

Australian Journal of Chemistry 65(9) 1298-1304 https://doi.org/10.1071/CH12104
Submitted: 17 February 2012  Accepted: 26 March 2012   Published: 5 June 2012

Abstract

Magnetic circular dichroism and magnetic linear dichroism spectroscopy have been used to study the near infrared 3A2g → 3T2g transition of Ni(ii) doped MgO. Two sharp electronic origins are observed and it is show that their polarisation behaviour follows that expected from calculations in detail for magnetic dipole allowed transitions in octahedral symmetry. Not all transitions to the spin-orbit components of the 3T2g state are observed. We put forward an explanation for why some components are missing, even though they are expected to be of comparable intensity, in terms of the different coupling to the Jahn–Teller active tetragonal distortion in the excited state. The two lower energy spin-orbit split components are nearly independent of this distortion, while the two higher energy components are strongly dependent. We also examine the double quantum transition in the electron paramagnetic resonance spectrum and estimate the magnitude of the random strain of tetragonal symmetry in the MgO lattice.


References

[1]  M. V. Iverson, J. C. Windscheif, W. A. Sibley, Appl. Phys. Lett. 1980, 36, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtlygsrk%3D&md5=2876f2f8f1e1ee2729b1c2ad778f3955CAS |

[2]  R. J. Tonucci, S. M. Jacobsen, W. M. Yen, Phys. Rev. B 1991, 43, 7377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisFKisbk%3D&md5=949b3c7323d4ed34f7ee509fd8b5e3b4CAS |

[3]  R. Llusar, M. Casarrubios, Z. Barandiarán, L. Seijoa, J. Chem. Phys. 1996, 105, 5321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVKlsLY%3D&md5=5a8e73e3a78dde71ae50efb185331dddCAS |

[4]  M. Regis, Y. Farge, M. Fontana, Phys. Stat. Sol. B 1973, 57, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktFWms70%3D&md5=b02ed79fd8e8ea3b2672b1f5eeb5d85aCAS |

[5]  S. A. Payne, Phys. Rev. B 1990, 41, 6109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1Glt7w%3D&md5=74c48e4f9c3215dd0de23c80e67b4a0eCAS |

[6]  M. J. Riley, C. J. Noble, P. L. W. Tregenna-Piggott, J. Chem. Phys. 2009, 130, 104708.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. J. Riley, C. Noble, P. L. W. Tregenna-Piggott, in Vibronic Interactions and the Jahn–Teller Effect. (Daul C, Atanasov M, Tregenna-Piggott PLW, editors.) 2012. p. 85. (Springer-Verlag: Heidelberg).

[8]  P. Garcia-Fernandez, A. Trueba, M. T. Barriuso, J. Aramburu, A. M. Moreno, in Vibronic Interactions and the Jahn–Teller Effect. (Daul C, Atanasov M, Tregenna-Piggott PLW, editors.) 2012. p. 105. (Springer-Verlag: Heidelberg).

[9]  J. W. Orton, P. Auzins, J. E. Wertz, Phys. Rev. Lett. 1960, 4, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXptVWjug%3D%3D&md5=fc0f8212dec803e6084608b1016b2666CAS |

[10]  S. R. P. Smith, F. Dravnieks, J. E. Wertz, Phys. Rev. 1969, 178, 471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXpt1ajug%3D%3D&md5=ebe006d6a8a01b58b5468010a5f7a78cCAS |

[11]  P. Droste, J. Mater. Sci. 1999, 10, 563.
         | 1:CAS:528:DyaK1MXotFanur4%3D&md5=7bc103913485b4cf085dd5675f003e16CAS |

[12]  A. K. Dick, E. R. Krausz, K. S. Hadler, C. J. Noble, P. L. W. Tregenna-Piggott, M. J. Riley, J. Phys. Chem. C 2008, 112, 14555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSnt7zO&md5=ad0ad61dd53cfc3636fa438508b13e38CAS |

[13]  M. J. Riley, E. R. Krausz, A. Stanco, J. Inorg. Biochem. 2003, 96, 217.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K. Y. Wong, D. Sengupta, E. R. Krausz, Chem. Phys. Lett. 1973, 21, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltF2quro%3D&md5=86e0926d28f706286a6bb828e6e34611CAS |

[15]  R. Pappalardo, D. L. Wood, R. C. Linares, J. Chem. Phys. 1961, 35, 1460.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XlvVWjtw%3D%3D&md5=39582051b26ec1fe1955ded63656139dCAS |

[16]  J. E. Ralph, M. G. Townsend, J. Chem. Phys. 1968, 48, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXntlOrsA%3D%3D&md5=f90b72a74e6c4c983ac9ce8a485be3d8CAS |

[17]  N. B. Manson, Phys. Rev. B 1971, 4, 2645.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. Campochiaro, D. S. McClure, P. Rabinowitz, S. Dougal, Phys. Rev. B 1991, 43, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXptFSrtw%3D%3D&md5=2ba220aa288e911710bad4b50144b4ffCAS |

[19]  G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the thirty-two point groups. 1963. (MIT Press: Cambridge, MA).

[20]  F. S. Ham, Phys. Rev. 1965, 138, A1727.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. D. Sturge, H. J. Guggenheim, Phys. Rev. B 1971, 4, 2092.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. D. Sturge, Phys. Rev. B 1970, 1, 1005.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  P. Garcia-Fernandez, A. Trueba, M. T. Barriuso, J. Aramburu, A. M. Moreno, Phys. Rev. Lett. 2010, 104, 035901.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3jvVSjug%3D%3D&md5=abb54776a56aee22902f1bd9b81b7bb1CAS |