Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Static and Dynamic Aspects of Supramolecular Interactions of Coumarin 153 and Fluorescein with Bovine Serum Albumin

Rajeev Yadav A , Shyamashis Das A and Pratik Sen A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208 016, Uttar Pradesh, India.

B Corresponding author. Email: psen@iitk.ac.in

Australian Journal of Chemistry 65(9) 1305-1313 https://doi.org/10.1071/CH12034
Submitted: 20 January 2012  Accepted: 2 April 2012   Published: 14 May 2012

Abstract

The static and dynamic aspects of supramolecular interactions between coumarin 153 (C153) and fluorescein (FL) with bovine serum albumin (BSA) has been studied by spectroscopic techniques. Both dyes were found to form 1 : 1 complexes with BSA, with binding constants 2.9 ± 0.3 × 105 M–1 and 2.1 ± 0.2 × 105 M–1 for C153 and FL respectively. The binding site of C153 has been determined by steady-state fluorescence resonance energy transfer, site marker competitive experiments, and a molecular docking study. Our studies indicate that C153 binds to domain IIIA of BSA whereas FL binds non-specifically. Denaturation characteristics of the C153 and FL binding region of BSA were found to be very different to global denaturation. Furthermore, kinetics of binding has been studied by the stopped-flow method. The observed rate constants were found to be 8.8 s–1 and 5.9 s–1 for C153 and FL respectively.


References

[1]  B. P. Kamat, J. Seetharamappa, Pol. J. Chem. 2004, 78, 723.
         | 1:CAS:528:DC%2BD2cXkt1egu7o%3D&md5=9ee7660960e9da65138105ba6f576c37CAS |

[2]  M. Cajlakovic, A. Bizzarri, V. Ribitsch, Anal. Chim. Acta 2006, 573–574, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, S. S. Gambhir, Bioconjug. Chem. 2006, 17, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Gntb8%3D&md5=1bae6cac891c15f1b5d48ce8f3692685CAS |

[4]  B. H. Hameed, M. I. El-Khaiary, J. Hazard. Mater. 2008, 153, 701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFyhs78%3D&md5=e8f7b3b2bb5880f4c226a32b16875e30CAS |

[5]  R. N. Shreve, M. W. Swaney, E. H. Riechers, J. Am. Chem. Soc. 1943, 65, 2241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2cXhsFWl&md5=ccd656861e40f404eb162f33cbff318aCAS |

[6]  H. P. Rang, M. M. Dale, J. Ritter, Molecular Pharmacology, 3rd edn, 1995 (Academic Press: New York, NY).

[7]  K. Yamasaki, T. Maruyama, U. Kragh-Hansen, M. Otagiri, Biochim. Biophys. Acta 1996, 1295, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Flarakos, K. L. Morand, P. Vouros, Anal. Chem. 2005, 77, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt12lsw%3D%3D&md5=08bf759e82518054c875848eadb3545eCAS |

[9]  T. O. Hushcha, A. I. Luik, Y. N. Naboka, Talanta 2000, 53, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFOitL0%3D&md5=9b28bbad849da84b4ac14b2d6ed3fc1fCAS |

[10]  B. P. Kamat, J. Seetharamappa, J. Pharm. Biomed. Anal. 2004, 35, 655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVCjtbk%3D&md5=cfea5d6494fe09ff0fd262e28ed4bb68CAS |

[11]  (a) Y. Zhang, B. Zhou, X. Zhang, P. Huang, C. Li, Y. Liu, J. Hazard. Mater. 2009, 163, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFaitr0%3D&md5=be7fd95d170a81b3fe8503c9bc1e923eCAS |
      (b) Y. Hu, Y. Ou-Yang, C. Dai, Y. Liu, X. Xiao, Biomacromolecules 2010, 11, 106.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Hu, Y. Liu, X. Xiao, Biomacromolecules 2009, 10, 517.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Hu, Y. Liu, X. Shen, X. Fang, S. Qu, J. Mol. Struct. 2005, 738, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Deepa, A. K. Mishra, J. Pharm. Biomed. Anal. 2005, 38, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVegurY%3D&md5=7f7d46f4de4266fcc0e526b8e6913e36CAS |

[13]  S. M. T. Shaikh, J. Seetharamappa, P. B. Kandagal, D. H. Manjunatha, S. Ashoka, Dyes Pigments 2007, 74, 665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlynt7g%3D&md5=7a315cd9ed12f39627e6890d24851db3CAS |

[14]  N. Akbay, D. Topkaya, Y. Ergün, S. Alp, E. Gök, J. Anal. Chem. 2010, 65, 382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks12qt7g%3D&md5=dfa449299ea367101faaea0f178def34CAS |

[15]  B. R. Stockwell, Nature 2004, 432, 846.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOht7jJ&md5=5e5b862e84f0fc002072aeb4c4f697a0CAS |

[16]  R. G. Kalkhambkar, G. M. Kulkarni, C. M. Kamanavalli, N. Premkumar, S. M. B. Asdaq, C. M. Sun, Eur. J. Med. Chem. 2008, 43, 2178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CqsLnL&md5=2fc67daf398be5800a8217b58d31edc5CAS |

[17]  L. Wu, X. Wang, W. Xu, F. Farzaneh, R. Xu, Curr. Med. Chem. 2009, 16, 4236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGht7rE&md5=698df43ef3a65d8a0cc535dfeeb5279bCAS |

[18]  M. Basanagouda, K. Shivashankar, M. V. Kulkarni, V. P. Rasal, H. Patel, S. S. Mutha, A. A. Mohite, Eur. J. Med. Chem. 2010, 45, 1151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvF2qsrk%3D&md5=1506e91b8c06b416e1f08b68c78df562CAS |

[19]  M. V. Kulkarni, G. M. Kulkarni, C. H. Lin, C. M. Sun, Curr. Med. Chem. 2006, 13, 2795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVamsrnE&md5=75768b662906e81dba8cc6e0c4321999CAS |

[20]  K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E. Litinas, D. N. Nicolaides, Curr. Pharm. Des. 2004, 10, 3813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlOlu7c%3D&md5=bd89adcc32f7af78a1f7bd4d0830ac1dCAS |

[21]  F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Curr. Med. Chem. 2005, 12, 887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVCjsb4%3D&md5=2e3a645d8b0fbee196c35463700d5617CAS |

[22]  M. E. Riveiro, N. De Kimpe, A. Moglioni, R. Vazquez, F. Monczor, C. Shayo, C. Davio, Curr. Med. Chem. 2010, 17, 1325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFehtLw%3D&md5=ce1e4a6a3ce3194bce777122c532561cCAS |

[23]  I. J. Cohen, J. Occup. Environ. Med. 1963, 5, 540.
         | 1:STN:280:DyaF2c%2Fjslamsw%3D%3D&md5=e03aed84ae35c0ca6d5da68aef45b2dbCAS |

[24]  U. Kragh-Hansen, Pharm. Rev. 1981, 33, 17.
         | 1:CAS:528:DyaL3MXlvVagsLs%3D&md5=6707a4e3dcbca923b41c6c2ed32c87c5CAS |

[25]  T. Peters, Adv. Protein Chem. 1985, 37, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtV2js70%3D&md5=c411997961e3ab34ef80450fc6d9dc93CAS |

[26]  B. Klajnert, L. Stanisławska, M. Bryszewska, B. Pałecz, Biochim. Biophys. Acta 2003, 1648, 115.
         | 1:CAS:528:DC%2BD3sXjvFWmu74%3D&md5=ac0f112109a863c049e5837b05435133CAS |

[27]  T. J. Peters, All About Albumin: Biochemistry, Genetic and Medical Applications 1996 (Academic Press: San Diego, CA).

[28]  X. M. He, D. C. Carter, Nature 1992, 358, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVGmurg%3D&md5=ab533c332b2786d0625b940dfb50a951CAS |

[29]  O. J. Bos, J. F. Labro, M. J. Fischer, J. Witling, L. H. Janssen, J. Biol. Chem. 1989, 264, 953.
         | 1:CAS:528:DyaL1MXptVyrsw%3D%3D&md5=4568ba67291ee0fe8eef6b9087f83546CAS |

[30]  G. Sudlow, D. J. Birkett, D. N. Wade, Mol. Pharmacol. 1976, 12, 1052.
         | 1:CAS:528:DyaE2sXjslCqsA%3D%3D&md5=d1f029fbff62379d7599565aada5073aCAS |

[31]  U. Kragh-Hansen, V. T. G. Chuang, M. Otagiri, Biol. Pharm. Bull. 2002, 25, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2hu7s%3D&md5=1fe5d2bc744adcc360ec38c5d6919646CAS |

[32]  T. Kosa, T. Maruyama, M. Otagiri, Pharm. Res. 1997, 14, 1607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVGmsrs%3D&md5=72a364986512ca5f2da9122721259439CAS |

[33]  C. Y. Huang, Methods Enzymol. 1982, 87, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXjtVCksQ%3D%3D&md5=1e2cd52d8cf52afec88ba6f52bd9b516CAS |

[34]  J. Shobini, A. K. Mishra, K. Sandhya, N. Chandra, Spectrochim. Acta A 2001, 57, 1133.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  N. Kitamura, T. Fukagawa, S. Kohtani, S. Kitoh, K. Kunimoto, R. Nakagaki, J. Photochem. Photobiol. Chem. 2007, 188, 378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVektbo%3D&md5=768e988895d2bfe0527c03d2a0710ef0CAS |

[36]  M. C. Mota, P. Carvalho, J. Ramalho, E. Leite, Int. Ophthalmol. 1991, 15, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnslymsQ%3D%3D&md5=0be40c8331b98f63b43db8ce0922f777CAS |

[37]  D. Seth, D. Chakrabarty, A. Chakraborty, N. Sarkar, Chem. Phys. Lett. 2005, 401, 546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFeitbvF&md5=5899ba5e3bb062dd3314d1295ecd35e9CAS |

[38]  G. Jones, W. R. Jackson, C. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 296.

[39]  J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn, 2006 (Springer: New York, NY).

[40]  N. L. Vekshin, J. Appl. Spectrosc. 1998, 65, 304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltl2rsr8%3D&md5=4e6d94f3d8e43d4ee7bf432ae3ef29dfCAS |

[41]  M. M. Santoro, D. W. Bolen, Biochemistry 1988, 27, 8063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1KgsLk%3D&md5=f89704b84f99f814e71673380417370aCAS |

[42]  T. O. Street, N. Courtemanche, D. Barrick, Methods Cell Biol. 2008, 84, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1amtLY%3D&md5=3b6d8db9f63c861fe68407cc507a4ce1CAS |

[43]  (a) B. Bhattacharya, S. Nakka, L. Guruprasad, A. Samanta, J. Phys. Chem. B 2009, 113, 2143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFeitLw%3D&md5=905dc1edebae6e98a635eb548de37b42CAS |
      (b) P. Hazra, D. Chakrabarty, A. Chakraborty, N. Sarkar, Biochem. Biophys. Res. Commun. 2004, 314, 543.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. V. Kumar, M. R. Duff, Photochem. Photobiol. Sci. 2008, 7, 1522.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  G Jones II, G Jones II, Chem. Phys. Lett. 1980, 72, 391.

[45]  B. K. Paul, A. Samanta, N. Guchait, J. Phys. Chem. B 2010, 114, 6183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKgsbo%3D&md5=1c6815d0d3478194b1e4eb110c87410cCAS |

[46]  A. Chakrabarty, A. Mallick, B. Haldar, P. Das, N. Chattopadhyay, Biomacromolecules 2007, 8, 920.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFKqsLk%3D&md5=7c765fb2f4cfced5e06d67b8de40ad1cCAS |

[47]  B. Ahmad, S. Parveen, R. H. Khan, Biomacromolecules 2006, 7, 1350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhsl2msrk%3D&md5=c5244e4998d350d2fcb8d8b2836dbe1aCAS |

[48]  A. Sułkowska, J. Równicka, B. Bojko, J. Poźycka, I. Zubik-skupień, W. Sułkowski, J. Mol. Struct. 2004, 704, 291.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  N. O. Mchedlov-Petrossyan, V. N. Kleshchevnikova, J. Chem. Soc., Faraday Trans. 1994, 90, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1Sqsrc%3D&md5=6d98b49c81e00c0e1e3925efbbcd0d1eCAS |

[50]  S. Göktürk, J. Photochem. Photobiol. Chem. 2005, 169, 115.
         | Crossref | GoogleScholarGoogle Scholar |