Frequency-based Quantum Computers from a Chemist’s Perspective
Laura K. McKemmish A D F , David J. Kedziora B E , Graham R. White B , Noel S. Hush C and Jeffrey R. Reimers AA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.
C School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia.
D Present address: Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
E Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia.
F Corresponding author. Email: laura.mckemmish@gmail.com
Australian Journal of Chemistry 65(5) 512-519 https://doi.org/10.1071/CH12053
Submitted: 30 January 2012 Accepted: 7 April 2012 Published: 23 May 2012
Abstract
Quantum computer elements are often designed and tested using molecular or nanoscopic components that form registers of qubits in which memory is stored and information processed. Often such registers are probed and manipulated using frequency-based techniques such as nuclear-magnetic resonance spectroscopy. A major challenge is to design molecules to act as these registers. We provide a basis for rational molecular design through consideration of the generic spectroscopic properties required for quantum computing, bypassing the need for intricate knowledge of the way these molecules are used spectroscopically. Designs in which two-qubit gate times scale similarly to those for one-qubit gates are presented. The specified spectroscopic requirements are largely independent of the type of spectroscopy used (e.g. magnetic resonance or vibrational) and are often independent of technical details of the application (e.g. broadband or high-resolution spectroscopy). This should allow the design of much larger quantum registers than have currently been demonstrated.
References
[1] G. E. Moore, Electronics 1965, 38, 114.[2] M. A. Neilsen, I. L. Chuang, Quantum Computation and Quantum Information 2000 (Cambridge University Press, Cambridge).
[3] C. H. Bennett, D. P. DiVincenzo, Nature 2000, 404, 247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1ahtLk%3D&md5=86cb5ac0d244e06b83f7201fbb90071fCAS |
[4] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O'Brien, Nature 2010, 464, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislaiu7s%3D&md5=c34795236af81e9c772b372c151d1bfcCAS |
[5] J. A. Pople, W. G. Schneider, H. J. Bernstein, High-resolution nuclear magnetic resonance spectroscopy 1959 (McGraw-Hill, New York).
[6] L. D. Field, S. Sternhell, J. R. Kalman, Organic structures from spectra 4th ed 2008 (Wiley: Chichester).
[7] C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D. G. Cory, R. Laflamme, Phys. Rev. Lett. 2006, 96, 170501.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283osFaktA%3D%3D&md5=a7b0b198c7f81117fca27902937db553CAS |
[8] P. W. Shor, SIAM J. Comput. 1997, 26, 1484.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang, Nature 2001, 414, 883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlOitg%3D%3D&md5=6d99f0c5bbe3082d64b2c69143897ef7CAS |
[10] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, A. G. White, Phys. Rev. Lett. 2007, 99, 250505.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2FnslWhug%3D%3D&md5=175bfb0136225d30265bab358b86ae1aCAS |
[11] C. Y. Lu, D. E. Browne, T. Yang, J. W. Pan, Phys. Rev. Lett. 2007, 99, 250504.
[12] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, M. Head-Gordon, Science 2005, 309, 1704.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFCisrg%3D&md5=304f98692681ebab5a4a84a218b99e28CAS |
[13] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru Guzik, A. G. White, Nat. Chem. 2010, 2, 106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Crug%3D%3D&md5=009ebbc2b0085695362e0626522a61e3CAS |
[14] D. W. Leung, I. L. Chuang, F. Yamaguchi, Y. Yamamoto, Phys. Rev. A 2000, 61, 042310.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. A. Jones, Fort. Physik 2000, 48, 909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFyhtLs%3D&md5=e28c0f496a19b45a1de4a5be47700b2aCAS |
[16] J. A. Jones, PhysChemComm 2001, 11, 1.
| 1:CAS:528:DC%2BD3MXhsVOqtrg%3D&md5=53e0844b28649e7df45619587906a9c2CAS |
[17] D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y. S. Weinstein, W. H. Zurek, Fort. Physik 2000, 48, 875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFyhtLo%3D&md5=7228e82d7b379788872ed84fbcea605dCAS |
[18] J. P. Palao, R. Kosloff, Phys. Rev. A 2003, 68, 062308.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Suzuki, K. Mishima, K. Yamashita, Chem. Phys. Lett. 2005, 410, 358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFeis7g%3D&md5=6519c8a559252829f5036e4070177930CAS |
[20] K. Mishima, K. Tokumo, K. Yamashita, Chem. Phys. 2008, 343, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFOnsQ%3D%3D&md5=e1866225c1530e8d93a51f48af77bfaaCAS |
[21] E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam, T. F. Havel, D. G. Cory, J. Chem. Phys. 2002, 116, 7599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVOktb8%3D&md5=ab78ca0123404f38add50abb32603a03CAS |
[22] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, S. J. Glaser, J. Magn. Reson. 2005, 172, 296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVClug%3D%3D&md5=3d1d22cb70e6ba5e9ff9b7a1155e2636CAS |
[23] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, S. J. Glaser, Phys. Rev. A 2005, 72, 042331.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, R. Laflamme, Phys. Rev. A 2008, 78, 012328.
| Crossref | GoogleScholarGoogle Scholar |
[25] M. Steffen, R. H. Koch, Phys. Rev. A 2007, 77, 062326.
[26] D. Suter, T. S. Mahesh, J. Chem. Phys. 2008, 128, 052206.
| Crossref | GoogleScholarGoogle Scholar |
[27] W. S. Warren, N. Gershenfeld, I. Chuang, Science 1997, 277, 1688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSmt7w%3D&md5=38570581d17b3880c48a4cd6c292db41CAS |
[28] S. L. Braunstein, Phys. Rev. Lett. 1999, 83, 1054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFGqt70%3D&md5=afb67dd65f9799b1a0f5af8b592859c9CAS |
[29] S. S. Roy, T. S. Mahesh, Phys. Rev. A 2010, 82, 052302.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. M. Souza, J. Zhang, C. A. Ryan, R. Laflamme, Nat. Commun. 2011, 2, 169.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. D. Bulnes, F. A. Bonk, R. S. Sarthour, E. R. de Azevedo, J. C. C. Freitas, T. J. Bonagamba, I. S. Oliveira, Braz. J. Phys. 2005, 35, 617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOhtrvJ&md5=626319a27a1e64a35c605b988bfe765aCAS |
[32] D. G. Cory, M. D. Price, T. F. Havel, Physica D 1998, 120, 82.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlahs7w%3D&md5=aff6dab2ec5f20eda1b9bb460170e194CAS |
[33] S. Simmons, R. M. Brown, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. W. Thewalt, K. M. Itoh, J. J. L. Morton, Nature 2011, 470, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFejsA%3D%3D&md5=163720dc1ea236143076ed0d26c955e3CAS |
[34] J. A. Jones, Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1art74%3D&md5=0f8305a91c919c0120f63b51b3a3a4a6CAS |
[35] N. C. Menicucci, C. M. Caves, Phys. Rev. Lett. 2002, 88, 167901.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383itVWmsQ%3D%3D&md5=bc2627ce29b3d1ebadfc3f256f6a1bc2CAS |
[36] L. M. K. Vandersypen, I. L. Chuang, Rev. Mod. Phys. 2005, 76, 1037.
| Crossref | GoogleScholarGoogle Scholar |
[37] N. Linden, B. Herve, R. J. Carbajo, R. Freeman, Chem. Phys. Lett. 1999, 305, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVarurc%3D&md5=8b20e150bb780bb3aaceb2e14a1934a5CAS |
[38] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, I. L. Chuang, Phys. Rev. Lett. 2000, 85, 5452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVKntL4%3D&md5=355e90561db84a971a634fcb4ad1e7d2CAS |
[39] J. Kim, J. S. Lee, S. Lee, Phys. Rev. A 2002, 65, 054301.
[40] X. H. Peng, X. W. Zhu, X. M. Fang, M. Feng, M. L. Liu, K. L. Gao, Phys. Rev. A 2002, 65, 042315.
[41] N. Boulant, K. Edmonds, J. Yang, M. A. Pravia, D. G. Cory, Phys. Rev. A 2003, 68, 032305.
| Crossref | GoogleScholarGoogle Scholar |
[42] E. Knill, R. Laflamme, R. Martinez, C. H. Tseng, Nature 2000, 404, 368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlyls74%3D&md5=fcf0ba84bc7059fcf1f3104abf45a1caCAS |
[43] K. Mishima, K. Shioya, K. Yamashita, Chem. Phys. Lett. 2007, 442, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVGjsbo%3D&md5=6ec424c289ad3640a3c0e4888e32bbcaCAS |
[44] L. Bomble, D. Lauvergnat, F. Remacle, M. Desouter-Lecomte, J. Chem. Phys. 2008, 128, 064110.
| 1:STN:280:DC%2BD1c3gsFWmtQ%3D%3D&md5=da2cd03fbf1cd691f27d736867a751c5CAS |
[45] L. Bomble, D. Lauvergnat, F. Remacle, M. Desouter-Lecomte, Phys. Rev. A 2009, 80, 022332.
| Crossref | GoogleScholarGoogle Scholar |
[46] R. de Vivie-Riedle, U. Troppmann, Chem. Rev. 2007, 107, 5082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WltL3E&md5=d13c95474175c7e8e9f3e040fb8e88eeCAS |
[47] C. Gollub, R. de Vivie-Riedle, J. Chem. Phys. 2008, 128, 167101.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3osFyrtA%3D%3D&md5=7027539896df4b6b862b524193d55e9fCAS |
[48] Y. Gu, D. Babikov, J. Chem. Phys. 2009, 131, 034306.
| Crossref | GoogleScholarGoogle Scholar |
[49] Y. Ohtsuki, Chem. Phys. Lett. 2005, 404, 126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVCms7k%3D&md5=85277102af7d872fa999d2f8d5a035a1CAS |
[50] C. M. Tesch, R. de Vivie-Riedle, Phys. Rev. Lett. 2002, 89, 157901.
| Crossref | GoogleScholarGoogle Scholar |
[51] W. Harneit, Phys. Rev. A 2002, 65, 032322.
| Crossref | GoogleScholarGoogle Scholar |
[52] K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Hofer, T. Takui, J. Mater. Chem. 2009, 19, 3739.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCrs7s%3D&md5=b7124c4be226c351aa83f321dffb7131CAS |
[53] W. Scherer, M. Mehring, J. Chem. Phys. 2008, 128, 052305.
| Crossref | GoogleScholarGoogle Scholar |
[54] C. M. Bowden, J. P. Dowling, S. P. Hotaling, Lect. Notes Comput. Sci. 1999, 1509, 364.
| Crossref | GoogleScholarGoogle Scholar |
[55] H. Haffner, C. F. Roos, R. Blatt, Phys. Rep. 2008, 469, 155.
| Crossref | GoogleScholarGoogle Scholar |
[56] S. Lloyd, Science 1993, 261, 1569.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvjsFOitA%3D%3D&md5=10b1677076021a0ef9e05acdbf614387CAS |
[57] L. M. K. Vandersypen, I. L. Chuang, Rev. Mod. Phys. 2005, 76, 1037.
| Crossref | GoogleScholarGoogle Scholar |
[58] H. McConnell, J. Chem. Phys. 1952, 20, 700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XmsFejsg%3D%3D&md5=7d965c9ae29c95b83b13fba8bde5b8e5CAS |
[59] J. R. Reimers, N. S. Hush, J. Photochem. Photobiol. A 1994, 82, 31.
| Crossref | GoogleScholarGoogle Scholar |
[60] J. R. Reimers, N. S. Hush, Chem. Phys. 1989, 134, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvVWrsrc%3D&md5=35be9f962e2a982e14db4cf58fe084aeCAS |