Bismuth(iii) Thiobenzoates and their Activity against Helicobacter pylori
Philip C. Andrews A D , Richard L. Ferrero B , Peter C. Junk A , Jonathan G. Maclellan C and Roshani M. Peiris AA School of Chemistry, Monash University, PO Box 23, Melbourne, Vic. 3800, Australia.
B Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Melbourne, Vic. 3168, Australia.
C Emerald Secondary College, 425 Belgrave-Gembrook Road, Melbourne, Vic. 3782, Australia.
D Corresponding author. Email: phil.andrews@monash.edu
Australian Journal of Chemistry 65(7) 883-891 https://doi.org/10.1071/CH12042
Submitted: 24 January 2012 Accepted: 13 March 2012 Published: 8 May 2012
Abstract
Two new substituted thiobenzoic acids, m-nitrothiobenzoic and m-sulfothiobenzoic acid, and six (four new) homo- and heteroleptic bismuth(iii) compounds derived from thiobenzoic acid and substituted thiobenzoic acid have been synthesised and fully characterised using both solvent free and solvent mediated methods; Bi(SC(=O)C6H5)3 (3), PhBi(SC(=O)C6H5)2 (4), Ph2Bi(SC(=O)C6H5) (5), Bi(SC(=O)C6H4-m-NO2)3 (6), PhBi(SC(=O)C6H4-m-NO2)2 (7), and PhBi(SC(=O)C6H4-m-SO3) (8). The solid-state structures of the previously reported Bi(SC(=O)C6H5)3 (3) and PhBi(SC(=O)]C6H5)2 (4) complexes have now been confirmed by X-ray crystallography. In the solid-state complex 3 forms a column-like polymeric structure resembling stacked bowls through pyramidal intermolecular Bi–S3 bonds of distance 3.359 Å, providing a Bi(iii) centre with a nine coordinate environment. Complex 4 forms discrete tetrameric units cemented by long intermolecular Bi–S (3.774 Å), Bi–O(= C) (3.030, 3.071 Å) and Bi–C bonds (3.627 Å). The complexes were assessed for their activity against three strains of Helicobacter pylori and all show a minimum inhibitory concentration of 6.25 µg mL–1, indicating that the high level of bactericidal activity is insensitive to the degree of substitution at the Bi(iii) centre.
References
[1] R. G. Pearson, Chemical Hardness 1997 (Wiley-VCH: New York, NY).[2] R. G. Pearson, Science 1966, 151, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvgtFSquw%3D%3D&md5=fb5c188fbd42c3b0d78c609790cf7fc9CAS |
[3] C. A. McAuliffe, G. Wilkinson, R. D. Gillard, J. A. McCleverty, Compr. Coord. Chem. 1987, 3, 279.
[4] N. C. Norman, Chemistry of Arsenic, Antimony and Bismuth 1998 (Thomson Science: London).
[5] R. Ge, H. Sun, Acc. Chem. Res. 2007, 40, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVajtr0%3D&md5=d47e53d6fb67452fb71e50bbd6f333abCAS |
[6] P. J. Sadler, H. Li, H. Sun, Coord. Chem. Rev. 1999, 185–186, 689.
| Crossref | GoogleScholarGoogle Scholar |
[7] P. C. Andrews, G. B. Deacon, P. C. Junk, N. F. Spiccia, Green Chem. 2007, 9, 1319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemu7bN&md5=6be2a1fc2668bdb7b6fb423cc680a629CAS |
[8] M. D. Nyman, M. J. Hampden-Smith, E. N. Duesler, Inorg. Chem. 1997, 36, 2218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisF2rsrg%3D&md5=91c1194628a852b5924b82f1eb93eb46CAS |
[9] J. T. Sampanthar, T. C. Deivaraj, J. J. Vittal, P. A. W. Dean, Dalton Trans. 1999, 4419.
| 1:CAS:528:DyaK1MXnvV2nu7k%3D&md5=7a4f305f624cf570645b65a2cf262ee3CAS |
[10] M. Kimura, A. Iwata, M. Itoh, K. Yamada, T. Kimura, Helv. Chim. Acta 2006, 89, 747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVyrtbw%3D&md5=9bce929adf0c264f356e9d33c56da144CAS |
[11] T. C. Deivaraj, M. Lin, K. P. Loh, M. Yeadon, J. J. Vittal, J. Mater. Chem. 2003, 13, 1149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVCnt7c%3D&md5=60b3a36e04cbdcf574419d0d7039cac8CAS |
[12] T. R. Burnett, P. A. W. Dean, J. J. Vittal, Can. J. Chem. 1994, 72, 1127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1eqtr0%3D&md5=1c138a7ef1393a5ff35f8d603f0464b0CAS |
[13] T. C. Deivaraj, J. J. Vittal, Inorg. Chim. Acta 2002, 336, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xltlegu7c%3D&md5=a31a020034db17587f15988ba76d0acbCAS |
[14] L. Tian, L. Y. Yep, T. T. Ong, J. Yi, J. Ding, J. J. Vittal, Cryst. Growth Des. 2009, 9, 353.
[15] K. R. Chaudhari, A. P. Wadawale, V. K. Jain, N. Yadav, R. Bohra, Indian J. Chem. A 2010, 49, 34.
[16] L. Tian, H. Y. Tan, J. J. Vittal, Cryst. Growth Des. 2008, 8, 735.
[17] P. Singh, S. Singh, V. D. Gupta, H. Noth, Z. Naturforsch B 1998, 53, 1475.
| 1:CAS:528:DyaK1MXmsFGkug%3D%3D&md5=7d50d15f6e6eeb38fa51a6e962871f99CAS |
[18] I. Jibril, F. T. Esmadi, H. Al-Masri, L. Zsolnai, G. Huttner, J. Organomet. Chem. 1996, 510, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslensrY%3D&md5=65f895753e9d24b06087dfbd3d1255faCAS |
[19] B. C. Saunders, G. J. Stacey, Biochem. J. 1942, 36, 368.
| 1:CAS:528:DyaH3sXltlI%3D&md5=b8eaf46fd21b0fca3689c32146c8582aCAS |
[20] W. Weston, C. M. Suter, Org. Synth. 1955, 3, 288.
[21] V. V. Savant, J. Gopalakrishnan, C. C. Patel, Inorg. Chem. 1970, 9, 748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtFOht7c%3D&md5=d4bd8ecc2be1b6ea1cf09ab92b191726CAS |
[22] L. Agocs, G. G. Briand, N. Burford, T. S. Cameron, W. Kwiatkowski, K. N. Robertson, Inorg. Chem. 1997, 36, 2855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFSls7s%3D&md5=bb791f8eec317f8b5bd0c91a00e06b32CAS |
[23] P. C. Andrews, G. B. Deacon, W. R. Jackson, M. Maguire, N. M. Scott, B. W. Skelton, A. H. White, Dalton Trans. 2002, 4634.
| 1:CAS:528:DC%2BD38XptlOjtbw%3D&md5=0ebb725ae27bee88002d7412e40177b9CAS |
[24] G. G. Briand, N. Burford, T. S. Cameron, W. Kwiatkowski, J. Am. Chem. Soc. 1998, 120, 11374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslKjs7w%3D&md5=e61049b4eb6023db7416fa5291e1136eCAS |
[25] P. C. Andrews, R. L. Ferrero, C. M. Forsyth, P. C. Junk, J. G. MacLellan, R. M. Peiris, Organometallics 2011, 30, 6283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWmsrfK&md5=3e289c927e304f41d4e5339244b72552CAS |
[26] T. D. Walsh, C. S. Koontz, J. Chem. Educ. 1997, 74, 585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1elu78%3D&md5=5e3ffddf32dc9bf8ce36ef9209710c82CAS |
[27] J. Viala, I. G. Boneca, A. Cardona, S. E. Girardin, A. Labigne, J. Bertin, D. J. Philpott, R. L. Ferrero, Nat. Immunol. 2004, 5, 1166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslSktrs%3D&md5=65434413e0cd38c63366e4491fd5ec3aCAS |
[28] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFehsbw%3D&md5=8d3d2b169b325c8c890be4769cf7844fCAS |
[29] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Decon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=380f70c3cee5e196922dc18c1fbabce4CAS |
[30] W. Kabsch, Acta Crystallogr. 2010, D66, 125.
| 1:CAS:528:DC%2BC3cXhs1SisLc%3D&md5=e8c094bc7aeecdda96bbf21f99ab86d0CAS |