Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Iron(II) Mononuclear Materials Containing Functionalised Dipyridylamino-Substituted Triazine Ligands: Structure, Magnetism and Spin Crossover*

Hayley S. Scott A , Tamsyn M. Ross A , Stuart R. Batten A , Ian A. Gass A , Boujemaa Moubaraki A , Suzanne M. Neville A and Keith S. Murray A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: keith.murray@monash.edu

Australian Journal of Chemistry 65(7) 874-882 https://doi.org/10.1071/CH12052
Submitted: 30 January 2012  Accepted: 13 March 2012   Published: 16 May 2012

Abstract

The spin crossover effect in iron(II) materials containing the di-2-pyridylamine functional group has been investigated for the new nitrile-functionalised ligand DTAC (2,2′,2″,2″′-((6-(di(pyridin-2-yl)amino)-1,3,5-triazine-2,4 diyl)bis(azanetriyl))tetra acetonitrile). This ligand has successfully been incorporated into a family of materials of the general formula trans-[Fe(DTAC)2(anion)2], wherein we have systematically varied the trans-nitrogen donor anion from NCS, NCSe, N(CN)2 (dca; dicyanamide) to NCBH3 – thus forming the four mononuclear materials trans-[Fe(DTAC)2(NCS)2]·6MeCN (1), trans-[Fe(DTAC)2(NCSe)2]·6MeCN (2), trans-[Fe(DTAC)2(N(CN)2)2] (3) and trans-[Fe(DTAC)2 (NCBH3)2]·3MeCN (4)). We find that the materials with a weaker crystal field strength anion remain high spin over all temperatures (1 and 2) whereas the materials containing stronger crystal field strength anions undergo a thermally induced spin crossover (3 and 4). Structural analysis revealed that the packing interactions in the solid state and the degree of solvation also play a large role in the observed magnetic behaviour. Indeed, aged or rapidly precipitated samples of 2 show a spin transition above room temperature.


References

[1]  L. Cambi, L. Szego, Ber. Dtsch. Chem. Ges. 1931, 64, 259.

[2]  E. König, Coord. Chem. Rev. 1968, 3, 471.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  E. K. Barefield, D. H. Busch, S. M. Nelson, Q. Rev. Chem. Soc. 1968, 22, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhsFelsw%3D%3D&md5=a7f95055729c023138abf3f534c9b7afCAS |

[4]  L. Sacconi, Pure Appl. Chem. 1971, 27, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XjtVahtw%3D%3D&md5=7c1aaa4b1a303922fc64904232b3f391CAS |

[5]  P. Gütlich, Struct. Bond. 1981, 44, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. L. Martin, A. H. White, Transition Metal Chemistry, 1968, Vol. 4, p. 113 (Ed. R. L. Carlin) (Marcel Dekker: New York).

[7]  H. A. Goodwin, Coord. Chem. Rev. 1976, 18, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xktlyksb0%3D&md5=43aea91615c46139cd45910c611a0b32CAS |

[8]  B. J. Kennedy, A. C. McGrath, K. S. Murray, B. W. Skelton, A. H. White, Inorg. Chem. 1987, 26, 483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXnslKktw%3D%3D&md5=e777577aeb7def620e6aa7c4ee937162CAS |

[9]  B. N. Figgis, E. S. Kucharski, A. H. White, Aust. J. Chem. 1983, 36, 1527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtVeqsrg%3D&md5=99266693cb2aac9dcf7ac6e50789eab7CAS |

[10]  See relevant articles in Spin Crossover in Transition Metal Compounds; Topics Curr. Chem. I–III; 233–235. (Eds P. Gütlich, H. A. Goodwin) (Springer, 20042005).

[11]  K. S. Murray, Eur. J. Inorg. Chem. 2008, 3101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVaqtb0%3D&md5=26ebb913292f4c76b987052f3b00b235CAS |

[12]  S. M. Neville, B. A. Leita, G. J. Halder, C. J. Kepert, B. Moubaraki, J.-F. Létard, K. S. Murray, Chemistry 2008, 14, 10123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCqtr3E&md5=4ce3423ff521ea6d95f05c217cbb5995CAS |

[13]  G. J. Halder, K. W. Chapman, S. M. Neville, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 17552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2jsLfE&md5=65d9cb0b58fae413d4aac3cb2104d750CAS |

[14]  J.-F. Létard, P. Guionneau, L. Goux-Capes, Top. Curr. Chem. 2004, 235, 221.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. M. Neville, C. Etrillard, S. Asthana, J.-F. Létard, Eur. J. Inorg. Chem. 2010, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFansg%3D%3D&md5=c156bd62e8af91c5b492c1f0901aecfeCAS |

[16]  A. Bousseksou, G. Molnár, L. Salmon, W. Nicolazzi, Chem. Soc. Rev. 2011, 40, 3313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWku7g%3D&md5=abc0b930870354fb6e8beb4e71361230CAS |

[17]  G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKmsrs%3D&md5=25bfb81c47b7221179c99cb1f24baac8CAS |

[18]  P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder, K. W. Chapman, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 10998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2rsLs%3D&md5=099c2bd9531d485937232da38536dcbdCAS |

[19]  R. Ohtani, K. Yoneda, S. Furukawa, N. Horike, S. Kitagawa, A. B. Gaspar, M. C. Muñoz, J. A. Real, M. Ohba, J. Am. Chem. Soc. 2011, 133, 8600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVWmsrs%3D&md5=918640233b03ccba0c70df1753f40a99CAS |

[20]  M. B. Duriska, S. M. Neville, B. Moubaraki, J. D. Cashion, G. J. Halder, K. W. Chapman, C. Balde, J.-F. Létard, K. S. Murray, C. J. Kepert, S. R. Batten, Angew. Chem. Int. Ed. 2009, 48, 2549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlOltLY%3D&md5=4fd88899908ea2de1f6eee5afaab8e5aCAS |

[21]  M. Clemente-León, E. Coronado, M. López-Jordà, J. C. Waerenborgh, Inorg. Chem. 2011, 50, 9122.

[22]  S. Alvarez, J. Am. Chem. Soc. 2003, 125, 6795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFanu7c%3D&md5=dfb9f2e9e27a5029d47581c750e63df1CAS |

[23]  C. Faulmann, K. Jacob, S. Dorbes, S. Lampert, I. Malfant, M.-L. Doublet, L. Valade, J. A. Real, Inorg. Chem. 2007, 46, 8548.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWrsbvN&md5=527d0f9590d2dbc368ef96120ff5fa34CAS |

[24]  P. Gütlich, Y. Garcia, H. Spiering, Magnetism, Molecules to Materials IV, 2002, p. 271 (Eds J. S. Miller, M. Drillon) (Wiley-VCH: Weinheim, Germany).

[25]  K. Boukheddaden, M. Nishino, S. Miyashita, F. Varret, Phys. Rev. B 2005, 72, 014467.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  B. Weber, E. S. Kaps, Y. Obei, K. Achterhold, F. G. Parak, Inorg. Chem. 2008, 47, 10779.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KmsbrN&md5=9a425bd867fdaa15ecdc96a0ed18cc8bCAS |

[27]  B. Weber, E. S. Kaps, J. Weigand, C. Carbonera, J.-F. Létard, K. Achterhold, F. G. Parak, Inorg. Chem. 2008, 47, 487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCrsLjP&md5=7d99cda553be84121f194e4f38ee1c28CAS |

[28]  M. Halcrow, Chem. Soc. Rev. 2011, 40, 4119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12msrc%3D&md5=5ecf6c7b25607a18cd1f3162258988a1CAS |

[29]  S. M. Neville, B. A. Leita, D. A. Offermann, M. B. Duriska, B. Moubaraki, K. W. Chapman, G. J. Halder, K. S. Murray, Eur. J. Inorg. Chem. 2007, 1073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFehtbg%3D&md5=ca78f9e7389d2675eba383697bfbb811CAS |

[30]  T. M. Ross, B. Moubaraki, D. R. Turner, G. J. Halder, G. Chastanet, S. M. Neville, J. D. Cashion, J.-F. Létard, S. R. Batten, K. S. Murray, Eur. J. Inorg. Chem. 2011, 1395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFSnu7k%3D&md5=2cdfb7999f90397b9b60b3bb5599eba2CAS |

[31]  T. M. Ross, B. Moubaraki, K. S. Wallwork, S. R. Batten, K. S. Murray, Dalton Trans. 2011, 40, 10147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eqs7rP&md5=ba5900f643c6770286f3187c10e7436eCAS |

[32]  T. M. Ross, B. Moubaraki, S. M. Neville, S. R. Batten, K. S. Murray, Dalton Trans. 2012, 41, 1512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVantw%3D%3D&md5=50d2e42d256cc0337c6c42fe810763d6CAS |

[33]  T. M. Ross, B. Moubaraki, S. R. Batten, K. S. Murray, Dalton Trans. 2012, 41, 2571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitl2hsrs%3D&md5=4897f0c6ac9012aca366211ec5439bd9CAS |

[34]  M. Quesada, P. de Hoog, P. Gamez, O. Roubeau, G. Aromi, B. Donnadieu, C. Massera, M. Lutz, A. L. Spek, J. Reedijk, Eur. J. Inorg. Chem. 2006, 1353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsleitLY%3D&md5=ec36ac04927fa3b94ec4f2bf4a5ff7f9CAS |

[35]  M. Quesada, M. Monrabal, G. Aromi, V. A. de la Peňa-O’Shea, M. Gich, E. Molins, O. Roubeau, S. J. Teat, E. J. MacLean, P. Gamez, J. Reedijk, J. Mater. Chem. 2006, 16, 2669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVyhs7o%3D&md5=0a7ff9ed320e7abd9004f6ba6d6d6b03CAS |

[36]  P. Gamez, J. S. Costa, M. Quesada, G. Aromí, Dalton Trans. 2009, 38, 7845.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. S. Crees, B. Moubaraki, K. S. Murray, C. J. Sumby, Aust. J. Chem. ,

[38]  P. Guionneau, M. Marchivie, G. Bravic, J.-F. Létard, D. Chasseau, Top. Curr. Chem. 2004, 234, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVKhsrk%3D&md5=c16f6ba3a4d6658b3bd3811e7bdc7c7eCAS |

[39]  C. Genre, E. Jeanneau, A. Bousseksou, D. Luneau, S. A. Borshch, G. S. Matouzenko, Chemistry 2008, 14, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFKhu74%3D&md5=53868c33de4c1a77a3150a6eb5cec8b1CAS |

[40]  N. Ortega-Villar, A. L. Thompson, M. C. Muñoz, V. M. Ugalde-Saldívar, A. E. Goeta, R. Moreno-Esparza, J. A. Real, Chemistry 2005, 11, 5721.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOqsL7P&md5=b688b466826cf57647caf1cfdf7119d6CAS |

[41]  N. Ortega-Villar, V. M. Ugalde-Saldívar, M. C. Muñoz, L. A. Ortiz-Frade, J. G. Alvarado-Rodríguez, J. A. Real, R. Moreno-Esparza, Inorg. Chem. 2007, 46, 7285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Sks7g%3D&md5=889ca212bed4980430b7dbde66c64feaCAS |

[42]  N. Moliner, A. B. Gaspar, M. C. Muñoz, V. Niel, J. Cano, J. A. Real, Inorg. Chem. 2001, 40, 3986.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFOmtLc%3D&md5=35e8f1742d9d1b308c1b89fad27ca0a0CAS |

[43]  C.-F. Sheu, S. Pillet, Y.-C. Lin, S.-M. Chen, I.-J. Hsu, C. Lecomte, Y. Wang, Inorg. Chem. 2008, 47, 10866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ktrvL&md5=bbee38767ad31d3fb60f2ecf556c59b7CAS |

[44]  T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=380f70c3cee5e196922dc18c1fbabce4CAS |

[45]  W. J. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=044d3a66cf8d76e0fc6868b1694ef3bbCAS |

[46]  SHELXL. Program for crystal structure solution and refinement, Bruker Analytical Instruments Inc., Madison, Wisconsin, USA, 1997; L. J. Barbour, X-SEED, University of Stellenbosch, South Africa, 1999.