Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterization of a Novel Biodegradable Amphiphilic Dendritic Polyether-ester

Jin peng Xiao A , Hong Wang A , Qiang Yi A , Gejun Ma A and Xue fei Zhang A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, China.

B Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.

C Corresponding author. Email: zxf7515@yahoo.com.cn

Australian Journal of Chemistry 65(5) 545-551 https://doi.org/10.1071/CH12013
Submitted: 14 January 2012  Accepted: 17 February 2012   Published: 14 May 2012

Abstract

A novel biodegradable amphiphilic dendritic polyether-ester composed of glycerol, glycolic acid oligomer and methoxy poly(ethylene glycol) is described. The monomer unit composed of glycerol and glycolic acid was protected by tert-butyl and benzyl groups. The amphiphilic dendritic polyether-ester was prepared in high yield using sequential deprotection reactions and esterification. The structure of all compounds was confirmed by 1H NMR spectra, 13C NMR spectra, GC-MS or matrix-assisted laser desorption–ionization time-of-flight mass spectrometry, and the amphiphilic dendritic macromolecule molecular weight and distribution were measured by gel permeation chromatography.


References

[1]  D. A. Tomalia, A. M. Naylor, W. A. Goddard, Angew. Chem. Int. Ed. Engl. 1990, 29, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, J. Am. Chem. Soc. 2003, 125, 15485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1akt7c%3D&md5=983b5751707ce32105ba7bcbeb228388CAS |

[3]  (a) M. E. Piotti, F. Rivera, C. J. Hawker, J. M. J. Fréchet, J. Am. Chem. Soc. 1999, 121, 9471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVOgurc%3D&md5=e70c68ba812061705f85ef87a6b5fc9cCAS |
      (b) C. Francavilla, M. D. Drake, F. V. Bright, M. R. Detty, J. Am. Chem. Soc. 2001, 123, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) Z. Peng, Y. Pan, B. Xu, J. Zhang, J. Am. Chem. Soc. 2000, 122, 6619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFOkt78%3D&md5=030306a549168c721259cf6ce61a2987CAS |
      (b) M. J. Xiong, Z. H. Li, M. S. Wong, Aust. J. Chem. 2007, 60, 603.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Chen, P. Akhtar, L. A. P. Kane-Maguire, G. G. Wallace, Aust. J. Chem. 1997, 50, 939.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) K. C. Wood, S. R. Little, R. Langer, P. T. Hammond, Angew. Chem. Int. Ed. 2005, 44, 6704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SnsLfM&md5=6769a7567925b82707f4d1ab82c823ffCAS |
      (b) D. Luo, K. Haverstick, N. Belcheva, E. Han, W. M. Saltzman, Macromolecules 2002, 35, 3456.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) C. C. Lee, E. R. Gillies, M. E. Fox, S. J. Guillaudeu, J. M. J. Fréchet, E. E. Dy, F. C. Szoka, Proc. Natl. Acad. Sci. USA 2006, 103, 16649.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1egtbnJ&md5=cded4e09d3b951f7ef4409a8a672bee7CAS |
      (b) C. K. Y. Chun, R. J. Payne, Aust. J. Chem. 2009, 62, 1339.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  E. R. Gillies, J. M. J. Fréchet, Drug Discov. Today 2005, 10, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslSqug%3D%3D&md5=41ec5fac7b1d1a702a3480c572d57763CAS |

[8]  (a) S. Svenson, D. A. Tomalia, Adv. Drug Deliv. Rev. 2005, 57, 2106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12ksbzL&md5=89130470eba81a0f3ece659332a31276CAS |
      (b) U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, Biomacromolecules 2006, 7, 649.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  S. H. Medina, M. E. H. El-Sayed, Chem. Rev. 2009, 109, 3141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWhur4%3D&md5=af765d31ff173ac3f886bec9c47bc0b4CAS |

[10]  M. W. Grinstaff, Chemistry 2002, 13, 2839.

[11]  H. Ihre, A. Hult, E. So1derlind, J. Am. Chem. Soc. 1996, 118, 6388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1Grsb4%3D&md5=cb41082d445e511349aa4945d7bd8941CAS |

[12]  O. L. P. D. Jesús, H. R. Ihre, L. Gagne, J. M. J. Fréchet, F. C. Szoka, Bioconjug. Chem. 2002, 13, 453.

[13]  (a) M. A. Carnahan, M. W. Grinstaff, Macromolecules 2001, 34, 7648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFajtbk%3D&md5=1be02389cb0f84600a05ae141d103b49CAS |
      (b) N. R. Luman, K. A. Smeds, M. W. Grinstaff, Chemistry 2003, 9, 5618.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) E. R. Gillies, E. Dy, J. M. J. Fréchet, F. C. Szoka, Mol. Pharm. 2005, 2, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFentbg%3D&md5=69aabb0c1601f5b70126d0f30532a573CAS |
      (b) M. A. Carnahan, C. Middleton, J. Kim, T. Kim, M. W. Grinstaff, J. Am. Chem. Soc. 2002, 124, 5291.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Xiao, J. Luo, W. L. Fowler, Y. Li, J. S. Lee, L. Xing, R. H. Cheng, L. Wang, K. S. Lam, Biomaterials 2009, 30, 6006.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) T. C. Stover, Y. S. Kim, T. L. Lowe, M. Kester, Biomaterials 2008, 29, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yiurbF&md5=0a87a5ab753db929340e733e05ce1df7CAS |
      (b) P. M. Nguyen, P. T. Hammond, Langmuir 2006, 22, 7825.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  E. R. Gillies, T. B. Jonsson, J. M. J. Fréchet, J. Am. Chem. Soc. 2004, 126, 11936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFGhsrk%3D&md5=cab5f89c2b09578deda2c5163996d1a0CAS |

[17]  M. A. Carnahan, M. W. Grinstaff, J. Am. Chem. Soc. 2001, 123, 2905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKhtbo%3D&md5=f9c8908ba30bb82d0cb435ae0dd10397CAS |

[18]  (a) P. G. Parzuchowski, M. Grabowska, M. Tryznowski, G. Rokicki, Macromolecules 2006, 39, 7181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVyku70%3D&md5=3a86d9475d9a510505385f3843d90fd5CAS |
      (b) X. H. Yu, J. Feng, R. X. Zhuo, Macromolecules 2005, 38, 6244.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  L. Zhang, J. Fu, Z. Xia, P. Wu, X. Zhang, J. Appl. Polym. Sci. 2011, 122, 758.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFCltr4%3D&md5=32df1ace8ba4d74639d8a988cadbd529CAS |

[20]  J. Jiang, L. Zhang, M. Wu, X. Zhang, J. Control. Release 2011, 152, e192.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  B. Romagnoli, P. R. Ashton, L. M. Harwood, D. Philp, D. W. Price, M. H. Smith, W. Hayes, Tetrahedron 2003, 59, 3975.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVClt7o%3D&md5=1e7d0ec8c09580e83e59746dae37c249CAS |

[22]  N. Baggett, J. S. Brimacombe, A. B. Foster, M. Stacey, D. H. Whiffen, J. Chem. Soc. 1960, 2574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXht12js7c%3D&md5=f4a7e6f79c9c95aca401bf3c03851eb9CAS |