Peptide Nucleic Acid Monomers: A Convenient and Efficient Synthetic Approach to Fmoc/Boc Monomers
Elisse C. Browne A , Steven J. Langford B and Belinda M. Abbott A CA La Trobe Institute of Molecular Science and Department of Chemistry, La Trobe University, Bundoora, Vic. 3086, Australia.
B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
C Corresponding author. Email: b.abbott@latrobe.edu.au
Australian Journal of Chemistry 65(5) 539-544 https://doi.org/10.1071/CH11471
Submitted: 12 December 2011 Accepted: 10 February 2012 Published: 14 May 2012
Abstract
A convenient and cost-effective method for the synthesis of Fmoc/Boc-protected peptide nucleic acid monomers is described. The Fmoc/Boc strategy was developed in order to eliminate the solubility issues during peptide nucleic acid solid-phase synthesis, in particular that of the cytosine monomer, that occurred when using the commercialized Bhoc chemistry approach.
References
[1] P. E. Nielsen, Science 1991, 254, 1497.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVKgsr4%3D&md5=abcaf9a4f2309e957baedb06d11d1bfcCAS |
[2] K. L. Dueholm, M. Egholm, C. Behrens, L. Christensen, H. F. Hansen, T. Vulpius, K. H. Petersen, R. H. Berg, P. E. Nielsen, O. Buchardt, J. Org. Chem. 1994, 59, 5767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVKjs78%3D&md5=6ad80b6e985d9a2fa4e4b259885bd2bcCAS |
[3] P. E. Nielsen, M. Egholm, O. Buchardt, Bioconjug. Chem. 1994, 5, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXnt1Gnug%3D%3D&md5=86968c39231fe86dc0400d4428156aa4CAS |
[4] A. Ray, B. Norden, FASEB J. 2000, 14, 1041.
| 1:CAS:528:DC%2BD3cXjvFyjtr4%3D&md5=d288e2199cf801cd1aeffc02f2ee310dCAS |
[5] I. K. Cheah, S. S. Cheema, S. J. Langford, E. C. Lopes, K. J. Macfarlane, S. Petratos, B. J. Turner, Bioorg. Med. Chem. Lett. 2003, 13, 2377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVGru7o%3D&md5=3773f058779a7edd56910e39f1c7f5c6CAS |
[6] B. J. Turner, I. K. Cheah, K. J. Macfarlane, E. C. Lopes, S. Petratos, S. J. Langford, S. S. Cheema, J. Neurochem. 2003, 87, 752.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslChs7k%3D&md5=b47b3271def9c1cf6c55cc92ac7968d8CAS |
[7] S. Pothukanuri, Z. Pianowski, N. Winssinger, Eur. J. Org. Chem. 2008, 3141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1Sls7g%3D&md5=6df3cbd1292997ee03797f4cdf0acf4eCAS |
[8] S. A. Thomson, J. A. Josey, R. Cadilla, M. D. Gaul, C. Fred Hassman, M. J. Luzzio, A. J. Pipe, K. L. Reed, D. J. Ricca, R. W. Wiethe, S. A. Noble, Tetrahedron 1995, 51, 6179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFOhtbw%3D&md5=ae8203fe99b9693bbbd2eb290fb01188CAS |
[9] F. Wojciechowski, R. H. E. Hudson, J. Org. Chem. 2008, 73, 3807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Ons7g%3D&md5=413ec616018770e6cb40447653009992CAS |
[10] T. Stafforst, U. Diederichsen, Eur. J. Org. Chem. 2007, 681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlelu7w%3D&md5=5b3b228e6b565c3c2d0a1df987e5d88aCAS |
[11] A. Porcheddu, G. Giacomelli, I. Piredda, M. Carta, G. Nieddu, Eur. J. Org. Chem. 2008, 5786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2msLzK&md5=982b8a725f7334573726aa02d4d186a6CAS |
[14] Y.-q. Wu, D. C. Limburg, D. E. Wilkinson, M. J. Vaal, G. S. Hamilton, Tetrahedron Lett. 2000, 41, 2847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVems78%3D&md5=67c83fd6c28a19d9b717a9235d42ef9aCAS |
[13] A. H. St. Amant, R. H. E. Hudson, Org. Biomol. Chem. 2012, 10, 876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OqsLvO&md5=b833186e5216fd92d8157e96666d8f7eCAS |
[12] J. M. Coull, M. Egholm, R. P. Hodge, M. Ismail, S. B. Rajur, PCT Patent WO 96/40685, 1996.
[15] L. Bialy, J. J. Díaz-Mochón, E. Specker, L. Keinicke, M. Bradley, Tetrahedron 2005, 61, 8295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlGqurg%3D&md5=d70c868721aaa820a88c9894c440830eCAS |
[16] R. H. E. Hudson, Y. Liu, F. Wojciechowski, Can. J. Chem. 2007, 85, 302.
| Crossref | GoogleScholarGoogle Scholar |
[17] X.-J. Liu, R.-Y. Chen, Phosphorus Sulfur 2001, 176, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFKktg%3D%3D&md5=4e70f3abfbed991eee6d5a9d3515b1edCAS |
[18] O. Seitz, O. Köhler, Chemistry 2001, 7, 3911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVertbk%3D&md5=4245e31bde8dcd2836b1e28a1cc70486CAS |
[19] D. V. Jarikote, O. Köhler, E. Socher, O. Seitz, Eur. J. Org. Chem. 2005, 15, 3187.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Chauhan, A. Varshney, B. Verma, M. Pennington, Tetrahedron Lett. 2007, 48, 4051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1KjsLc%3D&md5=b6904eee926e3148226b5248399dec90CAS |
[21] W. L. F. Armarego, C. L. L. Chai, in Purification of Laboratory Chemicals (5th edn) 2003 (Elsevier: Cornwall).
[22] D. Milic, M. Prato, Eur. J. Org. Chem. 2010, 476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1egsw%3D%3D&md5=6dd087f94a69113d75a476db96a4b535CAS |